Mapping informal settlements using WorldView-2 imagery and C4.5 decision tree classifier

B. M. G. Ribeiro
{"title":"Mapping informal settlements using WorldView-2 imagery and C4.5 decision tree classifier","authors":"B. M. G. Ribeiro","doi":"10.1109/JURSE.2015.7120470","DOIUrl":null,"url":null,"abstract":"Recent developments in geotechnologies provide resources to propose innovative strategies for urban and environmental management, including remote sensing data and computational resources for processing them. With the main objective of identifying urban areas of illegal occupation, this work uses WorldView-2-sensor images and the InterIMAGE, an image interpretation software, based on knowledge, under development by PUC-RJ in cooperation with INPE. Confirmed the potential of Geographic Object-Based Image Analysis (GEOBIA) and, on the other hand, the complexity on building the classification models, this work performs and evaluates land cover classification using C4.5 decision tree algorithm, which enables to quickly select the most representative attributes for each class and generate simple classification rules. The results show that data mining technique presented high classification performance. Using the land cover classes, we proceeded with the land use classification to identify areas of irregular occupation. The thematic maps achieved high values of overall accuracy and Kappa index. Typical classifications have been resolved by discriminating nine land cover classes.","PeriodicalId":137686,"journal":{"name":"Joint Urban Remote Sensing Event","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint Urban Remote Sensing Event","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JURSE.2015.7120470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recent developments in geotechnologies provide resources to propose innovative strategies for urban and environmental management, including remote sensing data and computational resources for processing them. With the main objective of identifying urban areas of illegal occupation, this work uses WorldView-2-sensor images and the InterIMAGE, an image interpretation software, based on knowledge, under development by PUC-RJ in cooperation with INPE. Confirmed the potential of Geographic Object-Based Image Analysis (GEOBIA) and, on the other hand, the complexity on building the classification models, this work performs and evaluates land cover classification using C4.5 decision tree algorithm, which enables to quickly select the most representative attributes for each class and generate simple classification rules. The results show that data mining technique presented high classification performance. Using the land cover classes, we proceeded with the land use classification to identify areas of irregular occupation. The thematic maps achieved high values of overall accuracy and Kappa index. Typical classifications have been resolved by discriminating nine land cover classes.
使用WorldView-2图像和C4.5决策树分类器绘制非正式住区
地球技术的最新发展为提出城市和环境管理的创新战略提供了资源,包括遥感数据和处理这些数据的计算资源。这项工作的主要目标是识别非法占领的城市地区,使用了worldview -2传感器图像和InterIMAGE,这是一款基于知识的图像解释软件,由pu - rj与INPE合作开发。一方面证实了地理目标图像分析(Geographic Object-Based Image Analysis, GEOBIA)的潜力,另一方面也证实了分类模型构建的复杂性,本工作采用C4.5决策树算法进行土地覆盖分类并进行评估,该算法能够快速地为每一类选择最具代表性的属性,并生成简单的分类规则。结果表明,数据挖掘技术具有较高的分类性能。利用土地覆盖等级,我们继续进行土地利用分类,以确定不正常占用的区域。专题地图总体精度和Kappa指数均达到较高水平。通过区分9个土地覆盖类别,解决了典型分类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信