A method for compiling neural networks into fuzzy rules using genetic algorithms and hierarchical approach

V. Palade, S. Bumbaru, G. Negoita
{"title":"A method for compiling neural networks into fuzzy rules using genetic algorithms and hierarchical approach","authors":"V. Palade, S. Bumbaru, G. Negoita","doi":"10.1109/KES.1998.725933","DOIUrl":null,"url":null,"abstract":"Neural networks have been criticized for their lack of human comprehensibility, which make them to appear as black box structures to the user. The paper proposes a mechanism that compiles a neural network into an equivalent set of fuzzy rules. Genetic algorithms are used to find the right structure of the fuzzy model equivalent with the neural network, and then to find the best shape of the membership functions. In order to reduce the number of fuzzy rules, we look for a hierarchical structure of the fuzzy system, considering the relations between the network inputs.","PeriodicalId":394492,"journal":{"name":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1998.725933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Neural networks have been criticized for their lack of human comprehensibility, which make them to appear as black box structures to the user. The paper proposes a mechanism that compiles a neural network into an equivalent set of fuzzy rules. Genetic algorithms are used to find the right structure of the fuzzy model equivalent with the neural network, and then to find the best shape of the membership functions. In order to reduce the number of fuzzy rules, we look for a hierarchical structure of the fuzzy system, considering the relations between the network inputs.
一种利用遗传算法和层次分析法将神经网络编译成模糊规则的方法
神经网络因其缺乏人类的可理解性而受到批评,这使得它们对用户来说像是黑盒子结构。本文提出了一种将神经网络编译成等价的模糊规则集的机制。利用遗传算法找到与神经网络等价的模糊模型的正确结构,进而找到隶属函数的最佳形状。为了减少模糊规则的数量,我们考虑网络输入之间的关系,寻找模糊系统的层次结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信