From approximate to exact integer programming

D. Dadush, F. Eisenbrand, T. Rothvoss
{"title":"From approximate to exact integer programming","authors":"D. Dadush, F. Eisenbrand, T. Rothvoss","doi":"10.48550/arXiv.2211.03859","DOIUrl":null,"url":null,"abstract":"Approximate integer programming is the following: For a convex body $K \\subseteq \\mathbb{R}^n$, either determine whether $K \\cap \\mathbb{Z}^n$ is empty, or find an integer point in the convex body scaled by $2$ from its center of gravity $c$. Approximate integer programming can be solved in time $2^{O(n)}$ while the fastest known methods for exact integer programming run in time $2^{O(n)} \\cdot n^n$. So far, there are no efficient methods for integer programming known that are based on approximate integer programming. Our main contribution are two such methods, each yielding novel complexity results. First, we show that an integer point $x^* \\in (K \\cap \\mathbb{Z}^n)$ can be found in time $2^{O(n)}$, provided that the remainders of each component $x_i^* \\mod{\\ell}$ for some arbitrarily fixed $\\ell \\geq 5(n+1)$ of $x^*$ are given. The algorithm is based on a cutting-plane technique, iteratively halving the volume of the feasible set. The cutting planes are determined via approximate integer programming. Enumeration of the possible remainders gives a $2^{O(n)}n^n$ algorithm for general integer programming. This matches the current best bound of an algorithm by Dadush (2012) that is considerably more involved. Our algorithm also relies on a new asymmetric approximate Carath\\'eodory theorem that might be of interest on its own. Our second method concerns integer programming problems in equation-standard form $Ax = b, 0 \\leq x \\leq u, \\, x \\in \\mathbb{Z}^n$ . Such a problem can be reduced to the solution of $\\prod_i O(\\log u_i +1)$ approximate integer programming problems. This implies, for example that knapsack or subset-sum problems with polynomial variable range $0 \\leq x_i \\leq p(n)$ can be solved in time $(\\log n)^{O(n)}$. For these problems, the best running time so far was $n^n \\cdot 2^{O(n)}$.","PeriodicalId":421894,"journal":{"name":"Conference on Integer Programming and Combinatorial Optimization","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Integer Programming and Combinatorial Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.03859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Approximate integer programming is the following: For a convex body $K \subseteq \mathbb{R}^n$, either determine whether $K \cap \mathbb{Z}^n$ is empty, or find an integer point in the convex body scaled by $2$ from its center of gravity $c$. Approximate integer programming can be solved in time $2^{O(n)}$ while the fastest known methods for exact integer programming run in time $2^{O(n)} \cdot n^n$. So far, there are no efficient methods for integer programming known that are based on approximate integer programming. Our main contribution are two such methods, each yielding novel complexity results. First, we show that an integer point $x^* \in (K \cap \mathbb{Z}^n)$ can be found in time $2^{O(n)}$, provided that the remainders of each component $x_i^* \mod{\ell}$ for some arbitrarily fixed $\ell \geq 5(n+1)$ of $x^*$ are given. The algorithm is based on a cutting-plane technique, iteratively halving the volume of the feasible set. The cutting planes are determined via approximate integer programming. Enumeration of the possible remainders gives a $2^{O(n)}n^n$ algorithm for general integer programming. This matches the current best bound of an algorithm by Dadush (2012) that is considerably more involved. Our algorithm also relies on a new asymmetric approximate Carath\'eodory theorem that might be of interest on its own. Our second method concerns integer programming problems in equation-standard form $Ax = b, 0 \leq x \leq u, \, x \in \mathbb{Z}^n$ . Such a problem can be reduced to the solution of $\prod_i O(\log u_i +1)$ approximate integer programming problems. This implies, for example that knapsack or subset-sum problems with polynomial variable range $0 \leq x_i \leq p(n)$ can be solved in time $(\log n)^{O(n)}$. For these problems, the best running time so far was $n^n \cdot 2^{O(n)}$.
从近似到精确整数规划
近似整数规划如下:对于凸体$K \subseteq \mathbb{R}^n$,确定$K \cap \mathbb{Z}^n$是否为空,或者在凸体中找到一个整数点,该整数点由其重心$c$缩放为$2$。近似整数规划可以及时解决$2^{O(n)}$,而已知最快的精确整数规划方法可以及时解决$2^{O(n)} \cdot n^n$。到目前为止,还没有一种有效的基于近似整数规划的整数规划方法。我们的主要贡献是两个这样的方法,每个方法都产生新的复杂性结果。首先,我们证明了在给定任意固定的$\ell \geq 5(n+1)$的$x^*$的每个分量$x_i^* \mod{\ell}$的余数的情况下,可以在时间$2^{O(n)}$上找到一个整数点$x^* \in (K \cap \mathbb{Z}^n)$。该算法基于切面技术,迭代地将可行集的体积减半。通过近似整数规划确定切割平面。枚举可能的余数给出了一般整数规划的$2^{O(n)}n^n$算法。这与Dadush(2012)算法的当前最佳边界相匹配,后者涉及的内容要多得多。我们的算法还依赖于一个新的不对称近似carathacimodory定理,它本身可能会引起人们的兴趣。我们的第二种方法涉及方程标准形式的整数规划问题$Ax = b, 0 \leq x \leq u, \, x \in \mathbb{Z}^n$。这样的问题可以简化为$\prod_i O(\log u_i +1)$近似整数规划问题的解。这意味着,例如,具有多项式变量范围$0 \leq x_i \leq p(n)$的背包或子集和问题可以在$(\log n)^{O(n)}$时间内解决。对于这些问题,到目前为止最好的运行时间是$n^n \cdot 2^{O(n)}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信