{"title":"Using semantic technologies to mine vehicular context for security","authors":"S. Narayanan, Sudip Mittal, A. Joshi","doi":"10.1109/SARNOF.2016.7846740","DOIUrl":null,"url":null,"abstract":"The number of sensors, actuators and electronic control units present in cars have increased in the last few years. The Internet-of-Things (IoT) model has transformed modern vehicles into a co-engineered interacting network of physical and computational components. Vehicles have become a complex cyber-physical system where context detection has become a challenge. In this paper, we present a rule based approach for context detection in vehicles. We also discuss various attack surfaces and vulnerabilities in vehicular IoT. We propose a system which collects data from the CAN bus and uses it to generate SWRL rules. We then reason over these rules to mine vehicular context. We also showcase a few use-cases as examples where our system can detect if a vehicle is in an unsafe/anomalous state.","PeriodicalId":137948,"journal":{"name":"2016 IEEE 37th Sarnoff Symposium","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 37th Sarnoff Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SARNOF.2016.7846740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The number of sensors, actuators and electronic control units present in cars have increased in the last few years. The Internet-of-Things (IoT) model has transformed modern vehicles into a co-engineered interacting network of physical and computational components. Vehicles have become a complex cyber-physical system where context detection has become a challenge. In this paper, we present a rule based approach for context detection in vehicles. We also discuss various attack surfaces and vulnerabilities in vehicular IoT. We propose a system which collects data from the CAN bus and uses it to generate SWRL rules. We then reason over these rules to mine vehicular context. We also showcase a few use-cases as examples where our system can detect if a vehicle is in an unsafe/anomalous state.