Model-Order Reduction Usage of Stability Equation Method Designed for Discrete-Time Systems

D. K. Sambariya, Trishla Sharma
{"title":"Model-Order Reduction Usage of Stability Equation Method Designed for Discrete-Time Systems","authors":"D. K. Sambariya, Trishla Sharma","doi":"10.1109/ICRITO.2018.8748665","DOIUrl":null,"url":null,"abstract":"This paper presents, a higher-order transfer function of DTS, reduced with stability equation method (SEM). For the reduction of DTS transfer function, indirect method is used. The ROM (Reduced Order Model) is founded on the pole-zero designs. In this work, using the SEM shows the graphical evaluation of step responses of ROM and other literature methods. The comparison displays improved results of proposed ROM than further approaches obtainable in literature. The analysis stays founded upon settling time, peak time, peak and rise time information of real model and ROM.","PeriodicalId":439047,"journal":{"name":"2018 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRITO.2018.8748665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents, a higher-order transfer function of DTS, reduced with stability equation method (SEM). For the reduction of DTS transfer function, indirect method is used. The ROM (Reduced Order Model) is founded on the pole-zero designs. In this work, using the SEM shows the graphical evaluation of step responses of ROM and other literature methods. The comparison displays improved results of proposed ROM than further approaches obtainable in literature. The analysis stays founded upon settling time, peak time, peak and rise time information of real model and ROM.
离散系统稳定性方程法的模型降阶应用
本文提出了用稳定性方程法(SEM)简化DTS的一个高阶传递函数。对于DTS传递函数的约简,采用了间接法。ROM(降阶模型)是建立在极点零设计的基础上的。在这项工作中,使用SEM显示了ROM和其他文献方法的阶跃响应的图形评价。比较表明所提出的ROM比文献中得到的其他方法的结果有所改善。分析建立在实际模型和ROM的稳定时间、峰值时间、峰值和上升时间信息的基础上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信