Fast Multi-Modal Unified Sparse Representation Learning

Mridula Verma, K. K. Shukla
{"title":"Fast Multi-Modal Unified Sparse Representation Learning","authors":"Mridula Verma, K. K. Shukla","doi":"10.1145/3078971.3079040","DOIUrl":null,"url":null,"abstract":"Exploiting feature sets belonging to different modalities helps in improving a significant amount of accuracy for the task of recognition. Given representations of an object in different modalities (e.g. image, text, audio etc.), to learn a unified representation of the object, has been a popular problem in the literature of multimedia retrieval. In this paper, we introduce a new iterative algorithm that learns the sparse unified representation with better accuracy in a lesser number of iterations than the previously reported results. Our algorithm employs a new fixed-point iterative scheme along with an inertial step. In order to obtain more discriminative representation, we also imposed a regularization term that utilizes the label information from the datasets. Experimental results on two real benchmark datasets demonstrate the efficacy of our method in terms of the number of iterations and accuracy.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3079040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Exploiting feature sets belonging to different modalities helps in improving a significant amount of accuracy for the task of recognition. Given representations of an object in different modalities (e.g. image, text, audio etc.), to learn a unified representation of the object, has been a popular problem in the literature of multimedia retrieval. In this paper, we introduce a new iterative algorithm that learns the sparse unified representation with better accuracy in a lesser number of iterations than the previously reported results. Our algorithm employs a new fixed-point iterative scheme along with an inertial step. In order to obtain more discriminative representation, we also imposed a regularization term that utilizes the label information from the datasets. Experimental results on two real benchmark datasets demonstrate the efficacy of our method in terms of the number of iterations and accuracy.
快速多模态统一稀疏表示学习
利用属于不同模态的特征集有助于显著提高识别任务的准确性。给定对象以不同的形式(如图像、文本、音频等)表示,如何学习对象的统一表示一直是多媒体检索文献中的一个热门问题。在本文中,我们引入了一种新的迭代算法,该算法在较少的迭代次数下以更好的精度学习稀疏统一表示。该算法采用了一种新的不动点迭代格式和惯性步长。为了获得更具判别性的表示,我们还施加了一个正则化项,利用来自数据集的标签信息。在两个真实基准数据集上的实验结果证明了该方法在迭代次数和准确率方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信