Capturing performance knowledge for automated analysis

K. Huck, Oscar R. Hernandez, Van Bui, S. Chandrasekaran, B. Chapman, A. Malony, L. McInnes, B. Norris
{"title":"Capturing performance knowledge for automated analysis","authors":"K. Huck, Oscar R. Hernandez, Van Bui, S. Chandrasekaran, B. Chapman, A. Malony, L. McInnes, B. Norris","doi":"10.1109/SC.2008.5222642","DOIUrl":null,"url":null,"abstract":"Automating the process of parallel performance experimentation, analysis, and problem diagnosis can enhance environments for performance-directed application development, compilation, and execution. This is especially true when parametric studies, modeling, and optimization strategies require large amounts of data to be collected and processed for knowledge synthesis and reuse. This paper describes the integration of the PerfExplorer performance data mining framework with the OpenUH compiler infrastructure. OpenUH provides auto-instrumentation of source code for performance experimentation and PerfExplorer provides automated and reusable analysis of the performance data through a scripting interface. More importantly, PerfExplorer inference rules have been developed to recognize and diagnose performance characteristics important for optimization strategies and modeling. Three case studies are presented which show our success with automation in OpenMP and MPI code tuning, parametric characterization, Pand power modeling. The paper discusses how the integration supports performance knowledge engineering across applications and feedback-based compiler optimization in general.","PeriodicalId":230761,"journal":{"name":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2008.5222642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Automating the process of parallel performance experimentation, analysis, and problem diagnosis can enhance environments for performance-directed application development, compilation, and execution. This is especially true when parametric studies, modeling, and optimization strategies require large amounts of data to be collected and processed for knowledge synthesis and reuse. This paper describes the integration of the PerfExplorer performance data mining framework with the OpenUH compiler infrastructure. OpenUH provides auto-instrumentation of source code for performance experimentation and PerfExplorer provides automated and reusable analysis of the performance data through a scripting interface. More importantly, PerfExplorer inference rules have been developed to recognize and diagnose performance characteristics important for optimization strategies and modeling. Three case studies are presented which show our success with automation in OpenMP and MPI code tuning, parametric characterization, Pand power modeling. The paper discusses how the integration supports performance knowledge engineering across applications and feedback-based compiler optimization in general.
为自动分析捕获性能知识
自动化并行性能实验、分析和问题诊断的过程可以增强面向性能的应用程序开发、编译和执行的环境。当参数化研究、建模和优化策略需要收集和处理大量数据以进行知识合成和重用时,这一点尤其正确。本文描述了PerfExplorer性能数据挖掘框架与OpenUH编译器基础架构的集成。OpenUH为性能实验提供了源代码的自动检测,而PerfExplorer通过脚本接口提供了性能数据的自动化和可重用分析。更重要的是,已经开发了PerfExplorer推理规则来识别和诊断对优化策略和建模很重要的性能特征。本文提出了三个案例研究,展示了我们在OpenMP和MPI代码调优、参数化表征、功率建模等方面的自动化成功。本文讨论了集成如何支持跨应用程序的性能知识工程和基于反馈的编译器优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信