{"title":"Iterative decoding: A novel re-scoring framework for confusion networks","authors":"Anoop Deoras, F. Jelinek","doi":"10.1109/ASRU.2009.5373438","DOIUrl":null,"url":null,"abstract":"Recently there has been a lot of interest in confusion network re-scoring using sophisticated and complex knowledge sources. Traditionally, re-scoring has been carried out by the N-best list method or by the lattices or confusion network dynamic programming method. Although the dynamic programming method is optimal, it allows for the incorporation of only Markov knowledge sources. N-best lists, on the other hand, can incorporate sentence level knowledge sources, but with increasing N, the re-scoring becomes computationally very intensive. In this paper, we present an elegant framework for confusion network re-scoring called ‘Iterative Decoding’. In it, integration of multiple and complex knowledge sources is not only easier but it also allows for much faster re-scoring as compared to the N-best list method. Experiments with Language Model re-scoring show that for comparable performance (in terms of word error rate (WER)) of Iterative Decoding and N-best list re-scoring, the search effort required by our method is 22 times less than that of the N-best list method.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Recently there has been a lot of interest in confusion network re-scoring using sophisticated and complex knowledge sources. Traditionally, re-scoring has been carried out by the N-best list method or by the lattices or confusion network dynamic programming method. Although the dynamic programming method is optimal, it allows for the incorporation of only Markov knowledge sources. N-best lists, on the other hand, can incorporate sentence level knowledge sources, but with increasing N, the re-scoring becomes computationally very intensive. In this paper, we present an elegant framework for confusion network re-scoring called ‘Iterative Decoding’. In it, integration of multiple and complex knowledge sources is not only easier but it also allows for much faster re-scoring as compared to the N-best list method. Experiments with Language Model re-scoring show that for comparable performance (in terms of word error rate (WER)) of Iterative Decoding and N-best list re-scoring, the search effort required by our method is 22 times less than that of the N-best list method.