Srijan Das, Arpit Chaudhary, F. Brémond, M. Thonnat
{"title":"Where to Focus on for Human Action Recognition?","authors":"Srijan Das, Arpit Chaudhary, F. Brémond, M. Thonnat","doi":"10.1109/WACV.2019.00015","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new attention model for the recognition of human action from RGB-D videos. We propose an attention mechanism based on 3D articulated pose. The objective is to focus on the most relevant body parts involved in the action. For action classification, we propose a classification network compounded of spatio-temporal subnetworks modeling the appearance of human body parts and RNN attention subnetwork implementing our attention mechanism. Furthermore, we train our proposed network end-to-end using a regularized cross-entropy loss, leading to a joint training of the RNN delivering attention globally to the whole set of spatio-temporal features, extracted from 3D ConvNets. Our method outperforms the State-of-the-art methods on the largest human activity recognition dataset available to-date (NTU RGB+D Dataset) which is also multi-views and on a human action recognition dataset with object interaction (Northwestern-UCLA Multiview Action 3D Dataset).","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
In this paper, we present a new attention model for the recognition of human action from RGB-D videos. We propose an attention mechanism based on 3D articulated pose. The objective is to focus on the most relevant body parts involved in the action. For action classification, we propose a classification network compounded of spatio-temporal subnetworks modeling the appearance of human body parts and RNN attention subnetwork implementing our attention mechanism. Furthermore, we train our proposed network end-to-end using a regularized cross-entropy loss, leading to a joint training of the RNN delivering attention globally to the whole set of spatio-temporal features, extracted from 3D ConvNets. Our method outperforms the State-of-the-art methods on the largest human activity recognition dataset available to-date (NTU RGB+D Dataset) which is also multi-views and on a human action recognition dataset with object interaction (Northwestern-UCLA Multiview Action 3D Dataset).