Dynamic thresholding technique for detection of hemorrhages in retinal images

Akhilesh Sharma, M. Dutta, Anushikha Singh, M. P. Sarathi, C. Travieso-González
{"title":"Dynamic thresholding technique for detection of hemorrhages in retinal images","authors":"Akhilesh Sharma, M. Dutta, Anushikha Singh, M. P. Sarathi, C. Travieso-González","doi":"10.1109/IC3.2014.6897158","DOIUrl":null,"url":null,"abstract":"The paper proposes a dynamic thresholding based image processing technique for the detection of hemorrhages in retinal images. The algorithm uses the information about color and size of hemorrhages as a tool for classifying hemorrhages from other dark lesions present in the retinal images. The algorithm uses the concepts of contrast enhancement, background estimation and intensity variation at edges that is gradient magnitude information supported by some morphological operations. The algorithm follows a simple approach of step by step removal of unwanted features from targeted images using concepts of thresholding and morphology without compromising with accuracy and time of execution. The experimental results indicate that hemorrhages are detected with good accuracy in the retinal images.","PeriodicalId":444918,"journal":{"name":"2014 Seventh International Conference on Contemporary Computing (IC3)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Seventh International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2014.6897158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The paper proposes a dynamic thresholding based image processing technique for the detection of hemorrhages in retinal images. The algorithm uses the information about color and size of hemorrhages as a tool for classifying hemorrhages from other dark lesions present in the retinal images. The algorithm uses the concepts of contrast enhancement, background estimation and intensity variation at edges that is gradient magnitude information supported by some morphological operations. The algorithm follows a simple approach of step by step removal of unwanted features from targeted images using concepts of thresholding and morphology without compromising with accuracy and time of execution. The experimental results indicate that hemorrhages are detected with good accuracy in the retinal images.
视网膜图像出血的动态阈值检测技术
提出了一种基于动态阈值的视网膜图像出血检测方法。该算法使用出血的颜色和大小信息作为工具,将出血与视网膜图像中存在的其他深色病变进行分类。该算法使用了对比度增强、背景估计和边缘强度变化的概念,这些概念是由一些形态学操作支持的梯度幅度信息。该算法采用一种简单的方法,使用阈值和形态学的概念逐步从目标图像中去除不需要的特征,而不影响准确性和执行时间。实验结果表明,该方法能较准确地检测出视网膜图像中的出血。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信