FPGA implementation of a FA-1 mechanoreceptor model for efficient representation of tactile features

Wang Wei Lee, C. Yeow, Hongliang Ren, S. Kukreja, N. Thakor
{"title":"FPGA implementation of a FA-1 mechanoreceptor model for efficient representation of tactile features","authors":"Wang Wei Lee, C. Yeow, Hongliang Ren, S. Kukreja, N. Thakor","doi":"10.1109/BIOROB.2016.7523631","DOIUrl":null,"url":null,"abstract":"Spatiotemporal spike patterns from a population of mechanoreceptors provide a concise representation of tactile stimuli that facilitates rapid sensory processing in the brain. Efficient models of mechanoreceptors are needed for the adoption of spike-based processing for robotic tactile sensing applications. This paper presents a biomimetic model of the fast-adapting type 1 (FA-1) mechanoreceptor, implemented on a field-programmable-gate-array (FPGA). The simplicity of this model enables its realization on large arrays of sensing elements while operating with sub-millisecond temporal precision required to capture deformation patterns. We illustrate this capability by interfacing with a 4096 element tactile sensor array with a 5.2 kHz sampling rate. Through physical experiments, we demonstrate the discrimination of force magnitude and local curvature during transient mechanical contact, using spike patterns obtained from the model. The approach has the potential to deliver responsive full-body tactile sensing in robotic and prosthetic applications.","PeriodicalId":235222,"journal":{"name":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2016.7523631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spatiotemporal spike patterns from a population of mechanoreceptors provide a concise representation of tactile stimuli that facilitates rapid sensory processing in the brain. Efficient models of mechanoreceptors are needed for the adoption of spike-based processing for robotic tactile sensing applications. This paper presents a biomimetic model of the fast-adapting type 1 (FA-1) mechanoreceptor, implemented on a field-programmable-gate-array (FPGA). The simplicity of this model enables its realization on large arrays of sensing elements while operating with sub-millisecond temporal precision required to capture deformation patterns. We illustrate this capability by interfacing with a 4096 element tactile sensor array with a 5.2 kHz sampling rate. Through physical experiments, we demonstrate the discrimination of force magnitude and local curvature during transient mechanical contact, using spike patterns obtained from the model. The approach has the potential to deliver responsive full-body tactile sensing in robotic and prosthetic applications.
一种FA-1机械感受器模型的FPGA实现,用于有效表征触觉特征
来自机械感受器群体的时空尖峰模式提供了触觉刺激的简洁表示,促进了大脑中的快速感觉处理。机械感受器的高效模型是采用基于脉冲处理的机器人触觉传感应用的必要条件。本文提出了一种在现场可编程门阵列(FPGA)上实现的快速适应型1 (FA-1)机械感受器的仿生模型。该模型的简单性使其能够在大型传感元件阵列上实现,同时以捕获变形模式所需的亚毫秒时间精度操作。我们通过与采样率为5.2 kHz的4096元件触觉传感器阵列接口来说明这种能力。通过物理实验,我们证明了瞬态机械接触过程中力大小和局部曲率的区分,使用从模型中获得的尖峰模式。该方法有潜力在机器人和假肢应用中提供响应式全身触觉传感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信