Optimal wavelet expansion via sampled-data control theory

K. Kashima, Y. Yamamoto, M. Nagahara
{"title":"Optimal wavelet expansion via sampled-data control theory","authors":"K. Kashima, Y. Yamamoto, M. Nagahara","doi":"10.1109/CDC.2001.980964","DOIUrl":null,"url":null,"abstract":"Wavelet theory provides a new type of function expansion and and has found many applications in signal processing. The discrete wavelet transform of a signal x(t) in L/sup 2/(R) is usually computed by the so-called pyramid algorithm. It however requires a proper initialization, i.e., expansion coefficients with respect to the basis of one of the desirable approximation subspaces. An interesting question is how we can obtain such coefficients when only sampled values of x(t) are available. The paper provides a design method for a digital filter that optimally gives such coefficients assuming certain a priori knowledge on the frequency characteristic of the target functions. We then extend the result to the case of non-orthogonal wavelets. Examples show the effectiveness of the proposed method.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Wavelet theory provides a new type of function expansion and and has found many applications in signal processing. The discrete wavelet transform of a signal x(t) in L/sup 2/(R) is usually computed by the so-called pyramid algorithm. It however requires a proper initialization, i.e., expansion coefficients with respect to the basis of one of the desirable approximation subspaces. An interesting question is how we can obtain such coefficients when only sampled values of x(t) are available. The paper provides a design method for a digital filter that optimally gives such coefficients assuming certain a priori knowledge on the frequency characteristic of the target functions. We then extend the result to the case of non-orthogonal wavelets. Examples show the effectiveness of the proposed method.
基于采样数据控制理论的最优小波展开
小波理论提供了一种新的函数展开方法,在信号处理中得到了广泛的应用。L/sup 2/(R)中信号x(t)的离散小波变换通常由所谓的金字塔算法计算。然而,它需要一个适当的初始化,即,关于一个理想的近似子空间的基的展开系数。一个有趣的问题是,当只有x(t)的采样值可用时,我们如何获得这样的系数。本文提出了一种数字滤波器的设计方法,在已知目标函数的频率特性的前提下,最优地给出了这些系数。然后我们将结果推广到非正交小波的情况。算例表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信