A Formal Perspective on Byte-Pair Encoding

Vilém Zouhar, Clara Meister, Juan Luis Gastaldi, Li Du, Tim Vieira, Mrinmaya Sachan, Ryan Cotterell
{"title":"A Formal Perspective on Byte-Pair Encoding","authors":"Vilém Zouhar, Clara Meister, Juan Luis Gastaldi, Li Du, Tim Vieira, Mrinmaya Sachan, Ryan Cotterell","doi":"10.48550/arXiv.2306.16837","DOIUrl":null,"url":null,"abstract":"Byte-Pair Encoding (BPE) is a popular algorithm used for tokenizing data in NLP, despite being devised initially as a compression method. BPE appears to be a greedy algorithm at face value, but the underlying optimization problem that BPE seeks to solve has not yet been laid down. We formalize BPE as a combinatorial optimization problem. Via submodular functions, we prove that the iterative greedy version is a $\\frac{1}{{\\sigma(\\boldsymbol{\\mu}^\\star)}}(1-e^{-{\\sigma(\\boldsymbol{\\mu}^\\star)}})$-approximation of an optimal merge sequence, where ${\\sigma(\\boldsymbol{\\mu}^\\star)}$ is the total backward curvature with respect to the optimal merge sequence $\\boldsymbol{\\mu}^\\star$. Empirically the lower bound of the approximation is $\\approx 0.37$. We provide a faster implementation of BPE which improves the runtime complexity from $\\mathcal{O}\\left(N M\\right)$ to $\\mathcal{O}\\left(N \\log M\\right)$, where $N$ is the sequence length and $M$ is the merge count. Finally, we optimize the brute-force algorithm for optimal BPE using memoization.","PeriodicalId":352845,"journal":{"name":"Annual Meeting of the Association for Computational Linguistics","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Meeting of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.16837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Byte-Pair Encoding (BPE) is a popular algorithm used for tokenizing data in NLP, despite being devised initially as a compression method. BPE appears to be a greedy algorithm at face value, but the underlying optimization problem that BPE seeks to solve has not yet been laid down. We formalize BPE as a combinatorial optimization problem. Via submodular functions, we prove that the iterative greedy version is a $\frac{1}{{\sigma(\boldsymbol{\mu}^\star)}}(1-e^{-{\sigma(\boldsymbol{\mu}^\star)}})$-approximation of an optimal merge sequence, where ${\sigma(\boldsymbol{\mu}^\star)}$ is the total backward curvature with respect to the optimal merge sequence $\boldsymbol{\mu}^\star$. Empirically the lower bound of the approximation is $\approx 0.37$. We provide a faster implementation of BPE which improves the runtime complexity from $\mathcal{O}\left(N M\right)$ to $\mathcal{O}\left(N \log M\right)$, where $N$ is the sequence length and $M$ is the merge count. Finally, we optimize the brute-force algorithm for optimal BPE using memoization.
字节对编码的形式化观点
字节对编码(BPE)是NLP中用于标记数据的一种流行算法,尽管最初是作为压缩方法设计的。从表面上看,BPE似乎是一种贪婪算法,但BPE寻求解决的潜在优化问题尚未确定。我们将BPE形式化为一个组合优化问题。通过子模函数,我们证明了迭代贪心版本是最优归并序列的$\frac{1}{{\sigma(\boldsymbol{\mu}^\star)}}(1-e^{-{\sigma(\boldsymbol{\mu}^\star)}})$ -逼近,其中${\sigma(\boldsymbol{\mu}^\star)}$是相对于最优归并序列$\boldsymbol{\mu}^\star$的总向后曲率。根据经验,近似的下界是$\approx 0.37$。我们提供了一个更快的BPE实现,它将运行时复杂度从$\mathcal{O}\left(N M\right)$提高到$\mathcal{O}\left(N \log M\right)$,其中$N$是序列长度,$M$是合并计数。最后,我们利用记忆法优化了最优BPE的蛮力算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信