Progressive Image Enhancement under Aesthetic Guidance

Xiaoyu Du, Xun Yang, Zhiguang Qin, Jinhui Tang
{"title":"Progressive Image Enhancement under Aesthetic Guidance","authors":"Xiaoyu Du, Xun Yang, Zhiguang Qin, Jinhui Tang","doi":"10.1145/3323873.3325055","DOIUrl":null,"url":null,"abstract":"Most existing image enhancement methods function like a black box, which cannot clearly reveal the procedure behind each image enhancement operation. To overcome this limitation, in this paper, we design a progressive image enhancement framework, which generates an expected \"good\" retouched image with a group of self-interpretable image filters under the guidance of an aesthetic assessment model. The introduced aesthetic network effectively alleviates the shortage of paired training samples by providing extra supervision, and eliminate the bias caused by human subjective preferences. The self-interpretable image filters designed in our image enhancement framework, make the overall image enhancing procedure easy-to-understand. Extensive experiments demonstrate the effectiveness of our proposed framework.","PeriodicalId":149041,"journal":{"name":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323873.3325055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Most existing image enhancement methods function like a black box, which cannot clearly reveal the procedure behind each image enhancement operation. To overcome this limitation, in this paper, we design a progressive image enhancement framework, which generates an expected "good" retouched image with a group of self-interpretable image filters under the guidance of an aesthetic assessment model. The introduced aesthetic network effectively alleviates the shortage of paired training samples by providing extra supervision, and eliminate the bias caused by human subjective preferences. The self-interpretable image filters designed in our image enhancement framework, make the overall image enhancing procedure easy-to-understand. Extensive experiments demonstrate the effectiveness of our proposed framework.
美学指导下的渐进式图像增强
现有的大多数图像增强方法都像一个黑匣子,无法清楚地揭示每个图像增强操作背后的过程。为了克服这一局限性,本文设计了一种渐进式图像增强框架,在审美评估模型的指导下,使用一组自解释图像滤波器生成预期的“良好”修饰图像。引入的审美网络通过提供额外的监督,有效地缓解了成对训练样本不足的问题,消除了人类主观偏好带来的偏差。在我们的图像增强框架中设计了自解释的图像滤波器,使整个图像增强过程易于理解。大量的实验证明了我们提出的框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信