The Application of Barycentric Subdivision Method for Numerical Integration in Method of Moments

Chunwang Xiang, Xunwang Dang, Maokun Li, Fan Yang, Shenheng Xu
{"title":"The Application of Barycentric Subdivision Method for Numerical Integration in Method of Moments","authors":"Chunwang Xiang, Xunwang Dang, Maokun Li, Fan Yang, Shenheng Xu","doi":"10.1109/COMPEM.2018.8496681","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the barycentric subdivision method for numerical integration in three-dimensional surface integral equation. This method allows a uniform treatment of both singular and non-singular integrals by avoiding overlap between the quadrature points of source integral and field integral. We studied the convergence of this method for singular integration. Numerical examples also show that this method could achieve the same level of accuracy for method of moments. Moreover, this method can reduce the time of matrix setup by half and hence increase the computational efficiency of method of moments.","PeriodicalId":221352,"journal":{"name":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2018.8496681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate the barycentric subdivision method for numerical integration in three-dimensional surface integral equation. This method allows a uniform treatment of both singular and non-singular integrals by avoiding overlap between the quadrature points of source integral and field integral. We studied the convergence of this method for singular integration. Numerical examples also show that this method could achieve the same level of accuracy for method of moments. Moreover, this method can reduce the time of matrix setup by half and hence increase the computational efficiency of method of moments.
重心细分法在矩法数值积分中的应用
本文研究了三维曲面积分方程数值积分的质心细分方法。该方法通过避免源积分和场积分的正交点重叠,使奇异积分和非奇异积分得到统一处理。研究了该方法对奇异积分的收敛性。数值算例表明,该方法可以达到矩量法的精度。该方法将矩阵的建立时间缩短了一半,从而提高了矩量法的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信