Rationalizing Substitutions

A. Mingarelli
{"title":"Rationalizing Substitutions","authors":"A. Mingarelli","doi":"10.1142/9789813272040_0008","DOIUrl":null,"url":null,"abstract":"In this chapter we look at a few more substitutions that can be used effectively to transform some types of integrals to those involving rational functions. In this way we may be able to integrate the original functions by referring to the method of Partial Fractions from Chapter 8. Before we start though we need to remind the reader of a notion called the least common multiple of two given positive integers. As the phrase suggests, the least common multiple (abbr. lcm) of two numbers x, y (assumed integers) is the smallest number that is a multiple of each one of x and y. For example, the lcm{2, 4} = 4, since 4 is the smallest number that is a multiple of both 2 and itself. Other examples include, the lcm{2, 3, 4} = 12, lcm{2, 3} = 6, lcm{2, 5} = 10, lcm{2, 4, 6} = 12 etc. Thus, given two fractions, say 1/2 and 1/3, the least common multiple of their denominators is 6.","PeriodicalId":424539,"journal":{"name":"Integration for Calculus, Analysis, and Differential Equations","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration for Calculus, Analysis, and Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789813272040_0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this chapter we look at a few more substitutions that can be used effectively to transform some types of integrals to those involving rational functions. In this way we may be able to integrate the original functions by referring to the method of Partial Fractions from Chapter 8. Before we start though we need to remind the reader of a notion called the least common multiple of two given positive integers. As the phrase suggests, the least common multiple (abbr. lcm) of two numbers x, y (assumed integers) is the smallest number that is a multiple of each one of x and y. For example, the lcm{2, 4} = 4, since 4 is the smallest number that is a multiple of both 2 and itself. Other examples include, the lcm{2, 3, 4} = 12, lcm{2, 3} = 6, lcm{2, 5} = 10, lcm{2, 4, 6} = 12 etc. Thus, given two fractions, say 1/2 and 1/3, the least common multiple of their denominators is 6.
合理化替换
在这一章中,我们将看到更多的替换,这些替换可以有效地将某些类型的积分转换为涉及有理函数的积分。这样,我们就可以参照第8章的部分分式方法对原始函数进行积分。在我们开始之前,我们需要提醒读者一个概念,叫做两个给定正整数的最小公倍数。正如短语所暗示的那样,两个数x, y(假设为整数)的最小公倍数(缩写lcm)是x和y各倍数的最小数。例如,lcm{2,4} = 4,因为4是2和自身倍数的最小数。其他例子还包括lcm{2,3,4} = 12、lcm{2,3} = 6、lcm{2,5} = 10、lcm{2,4,6} = 12等。因此,给定两个分数,比如1/2和1/3,它们的分母的最小公倍数是6。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信