A Nonparametric Kernel Regression Estimator for Flood Frequency Analysis

Y. Moon
{"title":"A Nonparametric Kernel Regression Estimator for Flood Frequency Analysis","authors":"Y. Moon","doi":"10.1080/12265934.1999.9693433","DOIUrl":null,"url":null,"abstract":"A nonparametric kernel regression for estimating flood frequency quantile of annual maximum flood events at a gaged site is presented in this paper. Parametric estimators and a nonparametric kernel regression estimator (NK) are compared for three situations—Gaussian data, Skewed data (3 parameter Gamma) and Gaussian Mixture data. Since the results of parametric estimators varied according to the situation, it is not easy to say which estimator is the best. However, the performance of the nonparametric kernel quantile estimator (NK) was relatively consistent across the estimation situations considered in terms of bias and root mean square error (RMSE).","PeriodicalId":131083,"journal":{"name":"The International Journal of Urban Sciences","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Urban Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/12265934.1999.9693433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A nonparametric kernel regression for estimating flood frequency quantile of annual maximum flood events at a gaged site is presented in this paper. Parametric estimators and a nonparametric kernel regression estimator (NK) are compared for three situations—Gaussian data, Skewed data (3 parameter Gamma) and Gaussian Mixture data. Since the results of parametric estimators varied according to the situation, it is not easy to say which estimator is the best. However, the performance of the nonparametric kernel quantile estimator (NK) was relatively consistent across the estimation situations considered in terms of bias and root mean square error (RMSE).
洪水频率分析的非参数核回归估计
本文提出了一种非参数核回归方法,用于估算限定地点年最大洪水事件的洪水频率分位数。对高斯数据、偏态数据(3参数Gamma)和高斯混合数据三种情况下的参数估计和非参数核回归估计(NK)进行了比较。由于参数估计器的结果会根据情况而变化,因此很难说哪个估计器是最好的。然而,在考虑偏差和均方根误差(RMSE)的估计情况下,非参数核分位数估计器(NK)的性能相对一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信