User verification using safe handwritten passwords on smartphones

T. Kutzner, Fanyu Ye, Ingrid Bönninger, C. Travieso-González, M. Dutta, Anushikha Singh
{"title":"User verification using safe handwritten passwords on smartphones","authors":"T. Kutzner, Fanyu Ye, Ingrid Bönninger, C. Travieso-González, M. Dutta, Anushikha Singh","doi":"10.1109/IC3.2015.7346651","DOIUrl":null,"url":null,"abstract":"This article focuses on the writer verification using safe handwritten passwords on smartphones. We extract and select 25 static and dynamic biometric features from a handwritten character password sequence on an android touch-screen device. For the writer verification we use the classification algorithms of WEKA framework. Our 32 test persons wrote generated safe passwords with a length of 8 characters. Each person wrote their password 12 times. The approach works with 384 training samples on a supervised system. The best result of 98.72% success rate for a correct classification, the proposal reached with the KStar and k- Nearest Neighbor classifier after ranking with Fisher Score feature selection. The best result of 10.42% false accepted rate is reached with KStar classifier.","PeriodicalId":217950,"journal":{"name":"2015 Eighth International Conference on Contemporary Computing (IC3)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Eighth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2015.7346651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This article focuses on the writer verification using safe handwritten passwords on smartphones. We extract and select 25 static and dynamic biometric features from a handwritten character password sequence on an android touch-screen device. For the writer verification we use the classification algorithms of WEKA framework. Our 32 test persons wrote generated safe passwords with a length of 8 characters. Each person wrote their password 12 times. The approach works with 384 training samples on a supervised system. The best result of 98.72% success rate for a correct classification, the proposal reached with the KStar and k- Nearest Neighbor classifier after ranking with Fisher Score feature selection. The best result of 10.42% false accepted rate is reached with KStar classifier.
在智能手机上使用安全的手写密码进行用户验证
本文主要介绍在智能手机上使用安全的手写密码进行作者验证。我们从android触摸屏设备上的手写字符密码序列中提取并选择了25个静态和动态生物特征。作者验证使用了WEKA框架的分类算法。我们的32名测试人员编写了生成的长度为8个字符的安全密码。每个人都写了12次密码。该方法在一个监督系统上使用384个训练样本。在对Fisher Score特征选择进行排序后,KStar和k-近邻分类器的分类成功率达到了98.72%的最佳结果。KStar分类器的最佳结果为10.42%的误接受率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信