Variational Model for Depth Estimation from Images

A. Malyshev, X. Tai
{"title":"Variational Model for Depth Estimation from Images","authors":"A. Malyshev, X. Tai","doi":"10.1109/SKIMA47702.2019.8982425","DOIUrl":null,"url":null,"abstract":"We propose a variant of convex reformulation of the standard variational model with non-convex data terms. The proposed convex relaxation of multilabel problems is a continuous formulation of Ishikawa’s method for extension of the graph min-cut to the multilabel problems. Our convex continuous reformulation is based upon functional lifting to a higher-dimensional space using superlevel functions. We solve the resulting convex variational problem by the augmented Lagrangian method. The most time consuming part of this method is the numerical solution of a boundary value problem for the Poisson equation in three-dimensional space, which is implemented by means of a fast Poisson solver. We illustrate the developed theory with several numerical examples for the standard correspondence problem for a rectified stereo image pair.","PeriodicalId":245523,"journal":{"name":"2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA47702.2019.8982425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a variant of convex reformulation of the standard variational model with non-convex data terms. The proposed convex relaxation of multilabel problems is a continuous formulation of Ishikawa’s method for extension of the graph min-cut to the multilabel problems. Our convex continuous reformulation is based upon functional lifting to a higher-dimensional space using superlevel functions. We solve the resulting convex variational problem by the augmented Lagrangian method. The most time consuming part of this method is the numerical solution of a boundary value problem for the Poisson equation in three-dimensional space, which is implemented by means of a fast Poisson solver. We illustrate the developed theory with several numerical examples for the standard correspondence problem for a rectified stereo image pair.
图像深度估计的变分模型
我们提出了一种非凸数据项的标准变分模型的凸重新表述。所提出的多标记问题的凸松弛是石川将图的最小切扩展到多标记问题的方法的连续表述。我们的凸连续重构是基于使用超层函数到高维空间的函数提升。我们用增广拉格朗日方法解决了由此产生的凸变分问题。该方法最耗时的部分是三维空间泊松方程边值问题的数值解,这是通过快速泊松求解器实现的。我们用几个校正立体像对的标准对应问题的数值例子来说明发展的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信