{"title":"Secret-key agreement over a non-coherent block-fading MIMO wiretap channel","authors":"Mattias Andersson, A. Khisti, M. Skoglund","doi":"10.1109/ITW.2012.6404646","DOIUrl":null,"url":null,"abstract":"We study secret-key agreement over a non-coherent block-fading multiple input multiple output (MIMO) wiretap channel. We give an achievable scheme based on training and source emulation and analyze the rate in the high SNR regime. Based on this analysis we find the optimal number of antennas to use for training. Our main result is that if the sum of the number of antennas at Alice and Bob is larger than the coherence time of the channel, the achievable rate does not depend on the number of antennas at Eve. In this case source emulation is not needed, and using only training is optimal. We also consider the case when there is no public channel available. In this case we show that secret-key agreement is still possible by using the wireless channel for discussion, giving the same number of secure degrees of freedom as in the case with a public channel.","PeriodicalId":325771,"journal":{"name":"2012 IEEE Information Theory Workshop","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2012.6404646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We study secret-key agreement over a non-coherent block-fading multiple input multiple output (MIMO) wiretap channel. We give an achievable scheme based on training and source emulation and analyze the rate in the high SNR regime. Based on this analysis we find the optimal number of antennas to use for training. Our main result is that if the sum of the number of antennas at Alice and Bob is larger than the coherence time of the channel, the achievable rate does not depend on the number of antennas at Eve. In this case source emulation is not needed, and using only training is optimal. We also consider the case when there is no public channel available. In this case we show that secret-key agreement is still possible by using the wireless channel for discussion, giving the same number of secure degrees of freedom as in the case with a public channel.