BILANGAN DOMINASI-LOKASI HASIL KALI SISIR GRAF LINTASAN DENGAN BEBERAPA GRAF REGULER

Aulia Sibua, Anuwar Kadir Abdul Gafur
{"title":"BILANGAN DOMINASI-LOKASI HASIL KALI SISIR GRAF LINTASAN DENGAN BEBERAPA GRAF REGULER","authors":"Aulia Sibua, Anuwar Kadir Abdul Gafur","doi":"10.55098/amalgamasi.v1.i2.pp71-78","DOIUrl":null,"url":null,"abstract":"To all the paper, all graph is connected, simple, undirected, and finite. A set vertex W of  is called the domination set if every vertex for every  is adjacent to some vertex  The minimum cardinality of a location-dominated set is called the location-dominated number, which is denoted by λ(G). In this research, we observe to the comb product of a path graph to regular graphs. If noticed to the definition of a regular graph, then obtained a complete graph is  graph with order . So in the results of this research we start by looking for the location-dominated number of the comb product of a path graph with a regular graph where the regular graph is a ,  end which each one has , , dan  where order  end .","PeriodicalId":212855,"journal":{"name":"Amalgamasi: Journal of Mathematics and Applications","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Amalgamasi: Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55098/amalgamasi.v1.i2.pp71-78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To all the paper, all graph is connected, simple, undirected, and finite. A set vertex W of  is called the domination set if every vertex for every  is adjacent to some vertex  The minimum cardinality of a location-dominated set is called the location-dominated number, which is denoted by λ(G). In this research, we observe to the comb product of a path graph to regular graphs. If noticed to the definition of a regular graph, then obtained a complete graph is  graph with order . So in the results of this research we start by looking for the location-dominated number of the comb product of a path graph with a regular graph where the regular graph is a ,  end which each one has , , dan  where order  end .
多位置数值乘以轨道上的梳子格拉夫和一些常规的格拉夫
所有的图都是连通的,简单的,无向的,有限的。的顶点集合W称为支配集,如果每个顶点的每个顶点都与某个顶点相邻。位置支配集的最小基数称为位置支配数,用λ(G)表示。在本研究中,我们观察了路径图与正则图的梳积。如果注意到正则图的定义,则得到的完全图是有阶图。所以在这项研究的结果中,我们首先寻找路径图和正则图的梳状积的位置主导数,正则图是a,每个图都有一个,和一个顺序结束的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信