Robust mixed noise removal with non-parametric Bayesian sparse outlier model

Peixian Zhuang, Wei Wang, Delu Zeng, Xinghao Ding
{"title":"Robust mixed noise removal with non-parametric Bayesian sparse outlier model","authors":"Peixian Zhuang, Wei Wang, Delu Zeng, Xinghao Ding","doi":"10.1109/MMSP.2014.6958792","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel non-parametric Bayesian framework for solving mixed noise removal problem. In order to removing unstable effects of outlier noise such as salt-and-pepper in the training data, we decompose the observed data model into three components terms of ideal data, Gaussian noise and sparse outlier. And the proposed model employs spike-slab sparse prior to find the sparser coefficients of desired data term and outlier noise. Note that the proposed non-parametric Bayesian model can infer the noise statistics from the training data and have been robust to the mixed noise without tuning of model parameters. Experimental results demonstrate our proposed algorithm performs well with mixed noise and achieves better performance over other state-of-the-art methods.","PeriodicalId":164858,"journal":{"name":"2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2014.6958792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a novel non-parametric Bayesian framework for solving mixed noise removal problem. In order to removing unstable effects of outlier noise such as salt-and-pepper in the training data, we decompose the observed data model into three components terms of ideal data, Gaussian noise and sparse outlier. And the proposed model employs spike-slab sparse prior to find the sparser coefficients of desired data term and outlier noise. Note that the proposed non-parametric Bayesian model can infer the noise statistics from the training data and have been robust to the mixed noise without tuning of model parameters. Experimental results demonstrate our proposed algorithm performs well with mixed noise and achieves better performance over other state-of-the-art methods.
基于非参数贝叶斯稀疏离群模型的鲁棒混合噪声去除
本文提出了一种新的非参数贝叶斯框架来解决混合噪声去除问题。为了去除训练数据中盐和胡椒等异常噪声的不稳定影响,我们将观测到的数据模型分解为理想数据、高斯噪声和稀疏异常值三个组成部分。该模型采用尖峰-平板先验稀疏方法来寻找所需数据项和离群噪声的稀疏系数。请注意,所提出的非参数贝叶斯模型可以从训练数据中推断噪声统计量,并且在不调整模型参数的情况下对混合噪声具有鲁棒性。实验结果表明,本文提出的算法在混合噪声条件下具有良好的性能,比其他先进的方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信