{"title":"Predicting building contamination using machine learning","authors":"Shawn Martin, S. McKenna","doi":"10.1109/ICMLA.2007.12","DOIUrl":null,"url":null,"abstract":"Potential events involving biological or chemical contamination of buildings are of major concern in the area of homeland security. Tools are needed to provide rapid, on- site predictions of contaminant levels given only approximate measurements in limited locations throughout a building. In principal, such tools could use calculations based on physical process models to provide accurate predictions. In practice, however, physical process models are too complex and computationally costly to be used in a real-time scenario. In this paper, we investigate the feasibility of using machine learning to provide easily computed but approximate models that would be applicable in the field. We develop a machine learning method based on support vector machine regression and classification. We apply our method to problems of estimating contamination levels and contaminant source location.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Potential events involving biological or chemical contamination of buildings are of major concern in the area of homeland security. Tools are needed to provide rapid, on- site predictions of contaminant levels given only approximate measurements in limited locations throughout a building. In principal, such tools could use calculations based on physical process models to provide accurate predictions. In practice, however, physical process models are too complex and computationally costly to be used in a real-time scenario. In this paper, we investigate the feasibility of using machine learning to provide easily computed but approximate models that would be applicable in the field. We develop a machine learning method based on support vector machine regression and classification. We apply our method to problems of estimating contamination levels and contaminant source location.