On semi-supervised learning of Dirichlet Mixture Models for Web content classification

J. Bai, XiaoPing Li, Xiaoxian Zhang
{"title":"On semi-supervised learning of Dirichlet Mixture Models for Web content classification","authors":"J. Bai, XiaoPing Li, Xiaoxian Zhang","doi":"10.1109/ICEIT.2010.5607590","DOIUrl":null,"url":null,"abstract":"This paper presents a method for designing semi-supervised classifier trained on labeled and unlabeled instances. We explore the trade-off between maximizing a discriminative likelihood of labeled data and a generative likelihood of labeled and unlabeled data. Moreover, mixture models are an interesting and flexible model family. The different uses of mixture models include for example generative models and density estimation. This paper investigates semi-supervised learning of mixture models using a unified objective function taking both labeled and unlabeled data into account. We conducted experiments on the WebKB and 20NEWSGROUPS. The results show that unlabeled data results in improvement in classification accuracy over the supervised model.","PeriodicalId":346498,"journal":{"name":"2010 International Conference on Educational and Information Technology","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Educational and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIT.2010.5607590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a method for designing semi-supervised classifier trained on labeled and unlabeled instances. We explore the trade-off between maximizing a discriminative likelihood of labeled data and a generative likelihood of labeled and unlabeled data. Moreover, mixture models are an interesting and flexible model family. The different uses of mixture models include for example generative models and density estimation. This paper investigates semi-supervised learning of mixture models using a unified objective function taking both labeled and unlabeled data into account. We conducted experiments on the WebKB and 20NEWSGROUPS. The results show that unlabeled data results in improvement in classification accuracy over the supervised model.
Dirichlet混合模型在Web内容分类中的半监督学习
本文提出了一种半监督分类器的设计方法,该分类器可同时训练标记和未标记的实例。我们探讨了最大化标记数据的判别可能性和标记和未标记数据的生成可能性之间的权衡。此外,混合模型是一个有趣且灵活的模型族。混合模型的不同用途包括例如生成模型和密度估计。本文研究了混合模型的半监督学习,使用统一的目标函数,同时考虑了标记和未标记数据。我们在WebKB和20NEWSGROUPS上进行了实验。结果表明,与有监督模型相比,未标记数据的分类精度得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信