Comparison of Fusion Methods for Successive Declarations of Radar Range Pro les

T. Bieker
{"title":"Comparison of Fusion Methods for Successive Declarations of Radar Range Pro les","authors":"T. Bieker","doi":"10.1109/ICIF.2006.301622","DOIUrl":null,"url":null,"abstract":"Classification of high-range-resolution profiles is a viable method of non-cooperative target identification. In order to increase the reliability and robustness of the classification result, methods of decision-level identity fusion can be applied. Different approaches have been used for a cumulative fusion of declarations of successively recorded radar range profiles. Besides probabilistic techniques such as the Bayesian fusion, non-probabilistic methods based on Dempster-Shafer or voting algorithms have come into focus. In this paper these different approaches are compared for typical situations which can arise in aircraft identification scenarios","PeriodicalId":248061,"journal":{"name":"2006 9th International Conference on Information Fusion","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2006.301622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Classification of high-range-resolution profiles is a viable method of non-cooperative target identification. In order to increase the reliability and robustness of the classification result, methods of decision-level identity fusion can be applied. Different approaches have been used for a cumulative fusion of declarations of successively recorded radar range profiles. Besides probabilistic techniques such as the Bayesian fusion, non-probabilistic methods based on Dempster-Shafer or voting algorithms have come into focus. In this paper these different approaches are compared for typical situations which can arise in aircraft identification scenarios
雷达距离表连续申报融合方法比较
高距离分辨率剖面分类是一种可行的非合作目标识别方法。为了提高分类结果的可靠性和鲁棒性,可以采用决策级身份融合的方法。不同的方法已被用于连续记录的雷达距离廓线声明的累积融合。除了贝叶斯融合等概率技术外,基于Dempster-Shafer或投票算法的非概率方法也成为关注的焦点。在本文中,这些不同的方法比较了飞机识别场景中可能出现的典型情况
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信