Brain MR Image Tumor Segmentation with Ventricular Deformation

Kai Xiao, A. Hassanien, Y. Sun, E. Ng
{"title":"Brain MR Image Tumor Segmentation with Ventricular Deformation","authors":"Kai Xiao, A. Hassanien, Y. Sun, E. Ng","doi":"10.1109/ICIG.2011.141","DOIUrl":null,"url":null,"abstract":"This paper addresses the issue of the weak association between brain MRI intensity value and anatomical meaning of MR image pixels. By investigating the deformation on brain lateral ventricles and compression from tumor, the correlation between them is quantified and utilized. With the proposed feature extraction component, lateral ventricular deformation is transformed into an additional feature for brain tumor segmentation. Some comparative experiments using both supervised and unsupervised pattern recognition segmentation methods show the improved tumor segmentation accuracy in some image cases.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper addresses the issue of the weak association between brain MRI intensity value and anatomical meaning of MR image pixels. By investigating the deformation on brain lateral ventricles and compression from tumor, the correlation between them is quantified and utilized. With the proposed feature extraction component, lateral ventricular deformation is transformed into an additional feature for brain tumor segmentation. Some comparative experiments using both supervised and unsupervised pattern recognition segmentation methods show the improved tumor segmentation accuracy in some image cases.
基于脑室变形的脑MR图像肿瘤分割
本文解决了脑MRI强度值与MRI图像像素的解剖意义之间的弱关联问题。通过对脑侧脑室变形与肿瘤压迫的研究,量化并利用两者之间的相关性。利用所提出的特征提取分量,将侧脑室变形转化为脑肿瘤分割的附加特征。一些对比实验表明,有监督和无监督模式识别分割方法在某些情况下提高了肿瘤分割的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信