Mapping Raw Acceleration Data on ActiGraph Counts: A Machine Learning Approach

E. Martín-González, Rodrigo de Luis García, J. P. Casaseca-de-la-Higuera, J. R. Leiza, J. Andrés-de-Llano, C. Alberola-López
{"title":"Mapping Raw Acceleration Data on ActiGraph Counts: A Machine Learning Approach","authors":"E. Martín-González, Rodrigo de Luis García, J. P. Casaseca-de-la-Higuera, J. R. Leiza, J. Andrés-de-Llano, C. Alberola-López","doi":"10.1145/3284179.3284260","DOIUrl":null,"url":null,"abstract":"A method for mapping actimetry data between two platforms has been carried out; one platform is the CE and FDA approved ActiGraph wGT3X-BT, valid in clinical diagnosis, and the second one is Microsoft Band 2 Smartband, available for the general public. The method consists of a regression performed using machine learning technique, specifically, different configurations of neural networks have been tested. Access to the data has been achieved by means of an in-house mobile application.","PeriodicalId":370465,"journal":{"name":"Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3284179.3284260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A method for mapping actimetry data between two platforms has been carried out; one platform is the CE and FDA approved ActiGraph wGT3X-BT, valid in clinical diagnosis, and the second one is Microsoft Band 2 Smartband, available for the general public. The method consists of a regression performed using machine learning technique, specifically, different configurations of neural networks have been tested. Access to the data has been achieved by means of an in-house mobile application.
在ActiGraph计数上映射原始加速数据:一种机器学习方法
提出了一种在两个平台之间映射活动测量数据的方法;一个平台是CE和FDA批准的ActiGraph wgt3g - bt,用于临床诊断;另一个平台是Microsoft Band 2 Smartband,面向公众。该方法包括使用机器学习技术进行回归,具体来说,已经测试了不同配置的神经网络。通过内部移动应用程序实现了对数据的访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信