Appliance Prediction from Total Energy Data — A Demand Response Method Using Simple and Complex Networks

Lakshmi Nambiar M, Krishna Chandran K S, Akshay Mohan, V. Gopal
{"title":"Appliance Prediction from Total Energy Data — A Demand Response Method Using Simple and Complex Networks","authors":"Lakshmi Nambiar M, Krishna Chandran K S, Akshay Mohan, V. Gopal","doi":"10.1109/ICPEA.2019.8818489","DOIUrl":null,"url":null,"abstract":"The electric energy consumption of a particular appliance is predicted using different machine learning and deep learning algorithms from the disaggregated energy consumption data of a household. This can be applied as a part of Demand Side Management (DSM) to educate the customer to shift the appliance use during peak and off peak tariff rates. The different algorithms used in the study are Support Vector Regression (SVR), k-Nearest Neighbour (kNN), Decision Tree Regression (DTR), Fully Connected Neural Network and Long Short Term Memory (LSTM). Two different performance matrices used for evaluation are Root Mean Square Error(RMSE) and Mean Absolute Error (MAE).","PeriodicalId":427328,"journal":{"name":"2019 IEEE 2nd International Conference on Power and Energy Applications (ICPEA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 2nd International Conference on Power and Energy Applications (ICPEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEA.2019.8818489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The electric energy consumption of a particular appliance is predicted using different machine learning and deep learning algorithms from the disaggregated energy consumption data of a household. This can be applied as a part of Demand Side Management (DSM) to educate the customer to shift the appliance use during peak and off peak tariff rates. The different algorithms used in the study are Support Vector Regression (SVR), k-Nearest Neighbour (kNN), Decision Tree Regression (DTR), Fully Connected Neural Network and Long Short Term Memory (LSTM). Two different performance matrices used for evaluation are Root Mean Square Error(RMSE) and Mean Absolute Error (MAE).
从总能源数据预测家电-使用简单和复杂网络的需求响应方法
使用不同的机器学习和深度学习算法,从家庭的分解能耗数据中预测特定电器的电能消耗。这可以作为需求侧管理(DSM)的一部分来应用,以教育客户在高峰和非高峰关税费率期间转移设备使用。研究中使用的不同算法是支持向量回归(SVR)、k近邻回归(kNN)、决策树回归(DTR)、全连接神经网络和长短期记忆(LSTM)。用于评估的两个不同的性能矩阵是均方根误差(RMSE)和平均绝对误差(MAE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信