{"title":"Enhancing data-driven fault detection through extended attribute variables","authors":"Y. Yamashita, S. Takami","doi":"10.1109/CACS.2013.6734107","DOIUrl":null,"url":null,"abstract":"Due to the high demand for safety and cost efficiency, process monitoring has been well studied. One of the most popular approaches for process monitoring is data-driven fault detection, which usually do not use process knowledge. This paper presents a preprocessing method to combine process knowledge with data-driven fault detection of chemical plant. The method provides a rule to generate extended attribute variables, and the better fault detection is expected with the extended dataset by usual data-driven approach such as a PCA based method. The method was successfully applied to fault detection of the Tennessee Eastman plant simulation benchmark problem.","PeriodicalId":186492,"journal":{"name":"2013 CACS International Automatic Control Conference (CACS)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 CACS International Automatic Control Conference (CACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACS.2013.6734107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the high demand for safety and cost efficiency, process monitoring has been well studied. One of the most popular approaches for process monitoring is data-driven fault detection, which usually do not use process knowledge. This paper presents a preprocessing method to combine process knowledge with data-driven fault detection of chemical plant. The method provides a rule to generate extended attribute variables, and the better fault detection is expected with the extended dataset by usual data-driven approach such as a PCA based method. The method was successfully applied to fault detection of the Tennessee Eastman plant simulation benchmark problem.