Powerful and Novel Tumour Detection in Brain MRI Images Employing Hybrid Computational Techniques

K. Lakshmi Narayanan, R. Niranjana, E. Francy Irudaya Rani, N. Subbulakshmi, R. Santhana Krishnan
{"title":"Powerful and Novel Tumour Detection in Brain MRI Images Employing Hybrid Computational Techniques","authors":"K. Lakshmi Narayanan, R. Niranjana, E. Francy Irudaya Rani, N. Subbulakshmi, R. Santhana Krishnan","doi":"10.3233/apc210279","DOIUrl":null,"url":null,"abstract":"Brain tumour detection is an evergreen topic to attract attention in the examination field of Information Technology innovation with biomedical designing, in view of the gigantic need of proficient and viable strategy for assessment of enormous measure of information. Image segmentation is considered as one of the most vital systems for visualizing tissues in an individual. To robotize image segmentation, we have proposed a calculation to get global optimal thresholding esteem for a specific brain MRI image, utilizing OTSU+Sauvola binarization strategy. The fundamental reason for feature collection is to diminish the quantity of structures utilized in classification while keeping up satisfactory classification exactness. One of the most extra-customary procedures applied for feature extraction is Discrete Wavelet Transform (DWT). Adequately it anticipates the estimation space on a plane to such an extent that the fluctuation of the information is ideally protected. We propose a justifiable model for brain tumours discovery and classification i.e., to classify whether the tumour is benign or malignant, utilizing SVM classification. SVM utilized here deals with basic hazard minimization to group the images for the tumour extraction, and a Graphical User Interface is created for the tumour classification operation, using the MATLAB platform.","PeriodicalId":429440,"journal":{"name":"Recent Trends in Intensive Computing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Trends in Intensive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/apc210279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Brain tumour detection is an evergreen topic to attract attention in the examination field of Information Technology innovation with biomedical designing, in view of the gigantic need of proficient and viable strategy for assessment of enormous measure of information. Image segmentation is considered as one of the most vital systems for visualizing tissues in an individual. To robotize image segmentation, we have proposed a calculation to get global optimal thresholding esteem for a specific brain MRI image, utilizing OTSU+Sauvola binarization strategy. The fundamental reason for feature collection is to diminish the quantity of structures utilized in classification while keeping up satisfactory classification exactness. One of the most extra-customary procedures applied for feature extraction is Discrete Wavelet Transform (DWT). Adequately it anticipates the estimation space on a plane to such an extent that the fluctuation of the information is ideally protected. We propose a justifiable model for brain tumours discovery and classification i.e., to classify whether the tumour is benign or malignant, utilizing SVM classification. SVM utilized here deals with basic hazard minimization to group the images for the tumour extraction, and a Graphical User Interface is created for the tumour classification operation, using the MATLAB platform.
利用混合计算技术在脑MRI图像中进行强大而新颖的肿瘤检测
脑肿瘤检测是信息技术创新与生物医学设计检测领域的一个常青课题,因为对海量信息的评估需要熟练可行的策略。图像分割被认为是个体组织可视化的最重要的系统之一。为了实现图像分割的机器化,我们提出了一种利用OTSU+Sauvola二值化策略对特定脑MRI图像进行全局最优阈值分割的计算。特征采集的根本目的是在保证分类精度的同时减少分类中使用的结构数量。离散小波变换(DWT)是一种常用的特征提取方法。它充分地预测平面上的估计空间,使信息的波动得到理想的保护。我们提出了一个合理的脑肿瘤发现和分类模型,即利用支持向量机分类来分类肿瘤是良性还是恶性。本文使用SVM处理基本的危害最小化,对图像进行分组进行肿瘤提取,并使用MATLAB平台创建一个用于肿瘤分类操作的图形用户界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信