A Simulation-Optimization Algorithm for Generating Sets of Alternatives Using Population-Based Metaheuristic Procedures

J. Yeomans
{"title":"A Simulation-Optimization Algorithm for Generating Sets of Alternatives Using Population-Based Metaheuristic Procedures","authors":"J. Yeomans","doi":"10.35629/9795-05020101","DOIUrl":null,"url":null,"abstract":"When solving complex stochastic engineering problems, it can prove preferable to create numerous quantifiably good alternatives that provide multiple, disparate perspectives. These alternatives need to satisfy the required system performance criteria and yet be maximally different from each other in the decision space. The approach for creating maximally different sets of solutions is referred to as modelling-togenerate-alternatives (MGA). Simulation-optimization approaches are frequently employed to solve computationally difficult problems containing significant stochastic uncertainties. This paper outlines an MGA algorithm that can generate sets of maximally different alternatives for any simulation-optimization method that employs a population-based procedure. This algorithmic approach is both computationally efficient and simultaneously produces the prescribed number of maximally different solution alternatives in a single computational run of the procedure.","PeriodicalId":422473,"journal":{"name":"Journal of Software Engineering and Simulation","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Software Engineering and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35629/9795-05020101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

When solving complex stochastic engineering problems, it can prove preferable to create numerous quantifiably good alternatives that provide multiple, disparate perspectives. These alternatives need to satisfy the required system performance criteria and yet be maximally different from each other in the decision space. The approach for creating maximally different sets of solutions is referred to as modelling-togenerate-alternatives (MGA). Simulation-optimization approaches are frequently employed to solve computationally difficult problems containing significant stochastic uncertainties. This paper outlines an MGA algorithm that can generate sets of maximally different alternatives for any simulation-optimization method that employs a population-based procedure. This algorithmic approach is both computationally efficient and simultaneously produces the prescribed number of maximally different solution alternatives in a single computational run of the procedure.
基于群体的元启发式方法的备选方案生成集模拟优化算法
在解决复杂的随机工程问题时,最好创建大量的可量化的好的替代方案,提供多种不同的视角。这些备选方案需要满足所需的系统性能标准,并且在决策空间中彼此之间最大程度地不同。创建最大程度不同的解决方案集的方法被称为建模-生成-备选方案(MGA)。模拟优化方法经常用于解决包含显著随机不确定性的计算困难问题。本文概述了一种MGA算法,该算法可以为任何采用基于种群的过程的模拟优化方法生成最大不同的备选方案集。这种算法方法不仅计算效率高,而且在程序的单次计算运行中同时产生规定数量的最大不同的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信