{"title":"A Simulation-Optimization Algorithm for Generating Sets of Alternatives Using Population-Based Metaheuristic Procedures","authors":"J. Yeomans","doi":"10.35629/9795-05020101","DOIUrl":null,"url":null,"abstract":"When solving complex stochastic engineering problems, it can prove preferable to create numerous quantifiably good alternatives that provide multiple, disparate perspectives. These alternatives need to satisfy the required system performance criteria and yet be maximally different from each other in the decision space. The approach for creating maximally different sets of solutions is referred to as modelling-togenerate-alternatives (MGA). Simulation-optimization approaches are frequently employed to solve computationally difficult problems containing significant stochastic uncertainties. This paper outlines an MGA algorithm that can generate sets of maximally different alternatives for any simulation-optimization method that employs a population-based procedure. This algorithmic approach is both computationally efficient and simultaneously produces the prescribed number of maximally different solution alternatives in a single computational run of the procedure.","PeriodicalId":422473,"journal":{"name":"Journal of Software Engineering and Simulation","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Software Engineering and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35629/9795-05020101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
When solving complex stochastic engineering problems, it can prove preferable to create numerous quantifiably good alternatives that provide multiple, disparate perspectives. These alternatives need to satisfy the required system performance criteria and yet be maximally different from each other in the decision space. The approach for creating maximally different sets of solutions is referred to as modelling-togenerate-alternatives (MGA). Simulation-optimization approaches are frequently employed to solve computationally difficult problems containing significant stochastic uncertainties. This paper outlines an MGA algorithm that can generate sets of maximally different alternatives for any simulation-optimization method that employs a population-based procedure. This algorithmic approach is both computationally efficient and simultaneously produces the prescribed number of maximally different solution alternatives in a single computational run of the procedure.