Unsupervised TOF Image Segmentation through Spectral Clustering and Region Merging

Luciano Lorenti, Javier Giacomantone, O. Bria
{"title":"Unsupervised TOF Image Segmentation through Spectral Clustering and Region Merging","authors":"Luciano Lorenti, Javier Giacomantone, O. Bria","doi":"10.24215/16666038.18.E11","DOIUrl":null,"url":null,"abstract":"Time of Flight (TOF) cameras generate two simultaneous images, one of intensity and one of range. This allows to tackle segmentation problems in which the separate use of intensity or range information is not enough to extract objects of interest from the 3D scene. In turn, range information allows to obtain a normal vector estimation of each point of the captured surfaces. This article presents a semi-supervised spectral clustering method which combines intensity and range information as well as normal vector orientations to improve segmentation results. The main contribution of this article consists in the use of a statistical region merging as a final step of the segmentation method. The region merging process combines adjacent regions which satisfy a similarity criterion. The performance of the proposed method was evaluated over real images. The use of this final step presents preliminary improvements in the metrics evaluated.","PeriodicalId":188846,"journal":{"name":"J. Comput. Sci. Technol.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Sci. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24215/16666038.18.E11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Time of Flight (TOF) cameras generate two simultaneous images, one of intensity and one of range. This allows to tackle segmentation problems in which the separate use of intensity or range information is not enough to extract objects of interest from the 3D scene. In turn, range information allows to obtain a normal vector estimation of each point of the captured surfaces. This article presents a semi-supervised spectral clustering method which combines intensity and range information as well as normal vector orientations to improve segmentation results. The main contribution of this article consists in the use of a statistical region merging as a final step of the segmentation method. The region merging process combines adjacent regions which satisfy a similarity criterion. The performance of the proposed method was evaluated over real images. The use of this final step presents preliminary improvements in the metrics evaluated.
基于光谱聚类和区域合并的无监督TOF图像分割
飞行时间(TOF)相机同时生成两幅图像,一幅是强度图像,一幅是距离图像。这可以解决分割问题,其中单独使用强度或距离信息不足以从3D场景中提取感兴趣的对象。反过来,距离信息允许获得捕获表面的每个点的法向量估计。本文提出了一种结合强度和距离信息以及法向量方向的半监督光谱聚类方法,以提高分割效果。本文的主要贡献在于使用统计区域合并作为分割方法的最后一步。区域合并过程将满足相似准则的相邻区域合并在一起。在实际图像上对该方法的性能进行了评价。最后一步的使用对所评估的度量标准进行了初步的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信