Alternative Regression Approach for Data-Driven Power Flow Linearization Methods

Gopal Jain, Suraj Sidar, D. Kiran
{"title":"Alternative Regression Approach for Data-Driven Power Flow Linearization Methods","authors":"Gopal Jain, Suraj Sidar, D. Kiran","doi":"10.1109/ICPS52420.2021.9670398","DOIUrl":null,"url":null,"abstract":"The knowledge of essential parameters for a power network is necessary for many applications. Evaluating them using traditional methods is computationally intensive and may fail to consider all external factors affecting the system. Therefore, a machine learning-based approach is proposed that predicts these parameters in this paper. The datasets are prepared for IEEE standard test systems and extended for their training and testing. This method can prove helpful to find all the unknown parameters for a power system, especially voltage magnitude and voltage angle, with significantly less error.","PeriodicalId":153735,"journal":{"name":"2021 9th IEEE International Conference on Power Systems (ICPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 9th IEEE International Conference on Power Systems (ICPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPS52420.2021.9670398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The knowledge of essential parameters for a power network is necessary for many applications. Evaluating them using traditional methods is computationally intensive and may fail to consider all external factors affecting the system. Therefore, a machine learning-based approach is proposed that predicts these parameters in this paper. The datasets are prepared for IEEE standard test systems and extended for their training and testing. This method can prove helpful to find all the unknown parameters for a power system, especially voltage magnitude and voltage angle, with significantly less error.
数据驱动潮流线性化方法的替代回归方法
在许多应用中,了解电网的基本参数是必要的。使用传统方法评估它们需要大量的计算,并且可能无法考虑影响系统的所有外部因素。因此,本文提出了一种基于机器学习的方法来预测这些参数。这些数据集是为IEEE标准测试系统准备的,并扩展了他们的培训和测试。该方法可以有效地求解电力系统的所有未知参数,特别是电压幅值和电压角,且误差明显减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信