LonXplain: Lonesomeness as a Consequence of Mental Disturbance in Reddit Posts

Muskan Garg, Chandni Saxena, Debabrata Samanta, B. Dorr
{"title":"LonXplain: Lonesomeness as a Consequence of Mental Disturbance in Reddit Posts","authors":"Muskan Garg, Chandni Saxena, Debabrata Samanta, B. Dorr","doi":"10.48550/arXiv.2305.18736","DOIUrl":null,"url":null,"abstract":"Social media is a potential source of information that infers latent mental states through Natural Language Processing (NLP). While narrating real-life experiences, social media users convey their feeling of loneliness or isolated lifestyle, impacting their mental well-being. Existing literature on psychological theories points to loneliness as the major consequence of interpersonal risk factors, propounding the need to investigate loneliness as a major aspect of mental disturbance. We formulate lonesomeness detection in social media posts as an explainable binary classification problem, discovering the users at-risk, suggesting the need of resilience for early control. To the best of our knowledge, there is no existing explainable dataset, i.e., one with human-readable, annotated text spans, to facilitate further research and development in loneliness detection causing mental disturbance. In this work, three experts: a senior clinical psychologist, a rehabilitation counselor, and a social NLP researcher define annotation schemes and perplexity guidelines to mark the presence or absence of lonesomeness, along with the marking of text-spans in original posts as explanation, in 3,521 Reddit posts. We expect the public release of our dataset, LonXplain, and traditional classifiers as baselines via GitHub.","PeriodicalId":136374,"journal":{"name":"International Conference on Applications of Natural Language to Data Bases","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Applications of Natural Language to Data Bases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.18736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Social media is a potential source of information that infers latent mental states through Natural Language Processing (NLP). While narrating real-life experiences, social media users convey their feeling of loneliness or isolated lifestyle, impacting their mental well-being. Existing literature on psychological theories points to loneliness as the major consequence of interpersonal risk factors, propounding the need to investigate loneliness as a major aspect of mental disturbance. We formulate lonesomeness detection in social media posts as an explainable binary classification problem, discovering the users at-risk, suggesting the need of resilience for early control. To the best of our knowledge, there is no existing explainable dataset, i.e., one with human-readable, annotated text spans, to facilitate further research and development in loneliness detection causing mental disturbance. In this work, three experts: a senior clinical psychologist, a rehabilitation counselor, and a social NLP researcher define annotation schemes and perplexity guidelines to mark the presence or absence of lonesomeness, along with the marking of text-spans in original posts as explanation, in 3,521 Reddit posts. We expect the public release of our dataset, LonXplain, and traditional classifiers as baselines via GitHub.
lonexplain: Reddit帖子中的孤独感是精神障碍的结果
社交媒体是通过自然语言处理(NLP)推断潜在心理状态的潜在信息来源。在叙述现实生活经历的同时,社交媒体用户传达了他们的孤独感或孤立的生活方式,影响了他们的心理健康。现有的心理学理论文献指出孤独是人际风险因素的主要后果,提出有必要将孤独作为精神障碍的一个主要方面进行研究。我们将社交媒体帖子中的孤独感检测作为一个可解释的二元分类问题,发现处于风险中的用户,这表明早期控制需要弹性。据我们所知,目前还没有可解释的数据集,即一个具有人类可读的、注释的文本跨度的数据集,以促进在孤独感检测引起精神障碍方面的进一步研究和发展。在这项工作中,三位专家:一位高级临床心理学家、一位康复咨询师和一位社会NLP研究人员,在3521个Reddit帖子中定义了标注方案和困惑指南,以标记孤独的存在或不存在,并在原始帖子中标记文本范围作为解释。我们期待通过GitHub公开发布我们的数据集lonexplain和传统分类器作为基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信