Image enhancement for DNA microarray gridding using Conditional Convolution Sub-Block Histogram Equalization

L. Pap, J. Zou
{"title":"Image enhancement for DNA microarray gridding using Conditional Convolution Sub-Block Histogram Equalization","authors":"L. Pap, J. Zou","doi":"10.1109/ISCIT.2007.4392092","DOIUrl":null,"url":null,"abstract":"In this paper, a new image enhancement method for DNA microarray images, namely the Conditional Convolution Sub-block Histogram Equalization (CCSHE), is presented. This is accomplished by first, converting the image into a binary image using the histogram transformation function. By doing this, the background and some of the artifacts in the image are separated from the DNA microarray spots. Secondly, this method also applies a conditional convolution filter depending on two input values which control how many times two individual convolution kernels are applied. By performing these operations, the unwanted signals known as artifacts are reduced, providing a more accurate gridding result.","PeriodicalId":331439,"journal":{"name":"2007 International Symposium on Communications and Information Technologies","volume":"9 46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Communications and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIT.2007.4392092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a new image enhancement method for DNA microarray images, namely the Conditional Convolution Sub-block Histogram Equalization (CCSHE), is presented. This is accomplished by first, converting the image into a binary image using the histogram transformation function. By doing this, the background and some of the artifacts in the image are separated from the DNA microarray spots. Secondly, this method also applies a conditional convolution filter depending on two input values which control how many times two individual convolution kernels are applied. By performing these operations, the unwanted signals known as artifacts are reduced, providing a more accurate gridding result.
基于条件卷积子块直方图均衡化的DNA微阵列网格图像增强
本文提出了一种新的DNA微阵列图像增强方法——条件卷积子块直方图均衡化(CCSHE)。这是通过首先使用直方图转换函数将图像转换为二值图像来实现的。通过这样做,背景和图像中的一些伪影从DNA微阵列点中分离出来。其次,该方法还根据两个输入值应用条件卷积滤波器,该值控制两个单独的卷积核应用的次数。通过执行这些操作,减少了被称为伪影的不需要的信号,提供了更准确的网格结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信