Comparative Study of Moments Shape Descriptors and propose a new hybrid Descriptor technique

S. Hamandi, A. M. Rahma, R. Hassan
{"title":"Comparative Study of Moments Shape Descriptors and propose a new hybrid Descriptor technique","authors":"S. Hamandi, A. M. Rahma, R. Hassan","doi":"10.1109/ICICIS46948.2019.9014844","DOIUrl":null,"url":null,"abstract":"The shape is a significant visible feature of an object in images. Finding images by using shape features has gained much consideration. For precise computerized classification of the type of object in the image, different features extraction approaches may be used. To identify and determine the preferences among them, three different techniques are studied extensively and determined how it affected by the change which may happen to the different shapes with the proposal of a hybrid method that contains the robust descriptors of each technique which improves the results and provide strong features for shape description that achieves high accuracy reaching more than 90%.","PeriodicalId":200604,"journal":{"name":"2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIS46948.2019.9014844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The shape is a significant visible feature of an object in images. Finding images by using shape features has gained much consideration. For precise computerized classification of the type of object in the image, different features extraction approaches may be used. To identify and determine the preferences among them, three different techniques are studied extensively and determined how it affected by the change which may happen to the different shapes with the proposal of a hybrid method that contains the robust descriptors of each technique which improves the results and provide strong features for shape description that achieves high accuracy reaching more than 90%.
矩形描述子的比较研究,提出一种新的混合描述子技术
形状是图像中物体的重要可见特征。利用形状特征寻找图像得到了广泛的关注。为了对图像中物体的类型进行精确的计算机分类,可以使用不同的特征提取方法。为了识别和确定它们之间的偏好,对三种不同的技术进行了广泛的研究,并确定了它如何受不同形状可能发生的变化的影响,并提出了一种混合方法,该方法包含每种技术的鲁棒描述子,从而改善了结果,并为形状描述提供了强大的特征,达到了90%以上的高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信