Disease Classification based on Dermoscopic Skin Images Using Convolutional Neural Network in Teledermatology System

I. K. E. Purnama, Arta Kusuma Hernanda, A. A. P. Ratna, I. Nurtanio, A. Hidayati, M. Purnomo, S. M. S. Nugroho, R. F. Rachmadi
{"title":"Disease Classification based on Dermoscopic Skin Images Using Convolutional Neural Network in Teledermatology System","authors":"I. K. E. Purnama, Arta Kusuma Hernanda, A. A. P. Ratna, I. Nurtanio, A. Hidayati, M. Purnomo, S. M. S. Nugroho, R. F. Rachmadi","doi":"10.1109/CENIM48368.2019.8973303","DOIUrl":null,"url":null,"abstract":"We have proposed a system of classification and detection of skin diseases that can be applied to Teledermatology. This system will classify skin diseases on dermoscopic images using the Deep Learning algorithm, Convolutional Neural Network (CNN). Dermoscopic image data in this study from MNIST HAM10000 dataset which amounts to 10,015 images and published by International Skin Image Collaboration (ISIC). The dataset is divided into seven class of skin diseases which fall into the category of skin cancer. The image classification process will use two pre-trained CNN models, MobileNet v1 and Inception V3. The model results from the learning process will be applied to a web-classifier. The comparison of predictive accuracy shows that the web-classifier using the CNN Inception V3 model has an accuracy value of 72% while the web-classifier that uses the MobileNet v1 model has an accuracy value of 58%.","PeriodicalId":106778,"journal":{"name":"2019 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CENIM48368.2019.8973303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We have proposed a system of classification and detection of skin diseases that can be applied to Teledermatology. This system will classify skin diseases on dermoscopic images using the Deep Learning algorithm, Convolutional Neural Network (CNN). Dermoscopic image data in this study from MNIST HAM10000 dataset which amounts to 10,015 images and published by International Skin Image Collaboration (ISIC). The dataset is divided into seven class of skin diseases which fall into the category of skin cancer. The image classification process will use two pre-trained CNN models, MobileNet v1 and Inception V3. The model results from the learning process will be applied to a web-classifier. The comparison of predictive accuracy shows that the web-classifier using the CNN Inception V3 model has an accuracy value of 72% while the web-classifier that uses the MobileNet v1 model has an accuracy value of 58%.
基于远程皮肤科系统中皮肤镜图像的卷积神经网络疾病分类
我们提出了一个可以应用于远程皮肤病学的皮肤病分类和检测系统。该系统将使用深度学习算法卷积神经网络(CNN)对皮肤镜图像进行皮肤病分类。本研究的皮肤镜图像数据来自MNIST HAM10000数据集,共计10015张图像,由国际皮肤图像协作组织(ISIC)发布。该数据集被分为7类皮肤病,这些皮肤病都属于皮肤癌的范畴。图像分类过程将使用两个预训练的CNN模型,MobileNet v1和Inception V3。学习过程的模型结果将应用于网络分类器。预测准确率的比较表明,使用CNN Inception V3模型的web分类器准确率值为72%,而使用MobileNet v1模型的web分类器准确率值为58%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信