Contextual Anomaly Detection for a Critical Industrial System Based on Logs and Metrics

Mostafa Farshchi, I. Weber, Raffaele Della Corte, A. Pecchia, M. Cinque, Jean-Guy Schneider, J. Grundy
{"title":"Contextual Anomaly Detection for a Critical Industrial System Based on Logs and Metrics","authors":"Mostafa Farshchi, I. Weber, Raffaele Della Corte, A. Pecchia, M. Cinque, Jean-Guy Schneider, J. Grundy","doi":"10.1109/EDCC.2018.00033","DOIUrl":null,"url":null,"abstract":"Recent advances in contextual anomaly detection attempt to combine resource metrics and event logs to uncover unexpected system behaviors at run-time. This is highly relevant for critical software systems, where monitoring is often mandated by international standards and guidelines. In this paper, we analyze the effectiveness of a metrics-logs contextual anomaly detection technique in a middleware for Air Traffic Control systems. Our study addresses the challenges of applying such techniques to a new case study with a dense volume of logs, and finer monitoring sampling rate. Guided by our experimental results, we propose and evaluate several actionable improvements, which include a change detection algorithm and the use of time windows on contextual anomaly detection.","PeriodicalId":129399,"journal":{"name":"2018 14th European Dependable Computing Conference (EDCC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th European Dependable Computing Conference (EDCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDCC.2018.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Recent advances in contextual anomaly detection attempt to combine resource metrics and event logs to uncover unexpected system behaviors at run-time. This is highly relevant for critical software systems, where monitoring is often mandated by international standards and guidelines. In this paper, we analyze the effectiveness of a metrics-logs contextual anomaly detection technique in a middleware for Air Traffic Control systems. Our study addresses the challenges of applying such techniques to a new case study with a dense volume of logs, and finer monitoring sampling rate. Guided by our experimental results, we propose and evaluate several actionable improvements, which include a change detection algorithm and the use of time windows on contextual anomaly detection.
基于日志和度量的关键工业系统上下文异常检测
上下文异常检测的最新进展试图将资源度量和事件日志结合起来,以在运行时发现意外的系统行为。这与关键软件系统高度相关,在这些系统中,监控通常是由国际标准和指导方针强制要求的。在本文中,我们分析了度量日志上下文异常检测技术在空中交通管制系统中间件中的有效性。我们的研究解决了将此类技术应用于具有密集测井量和更精细监测采样率的新案例研究的挑战。在实验结果的指导下,我们提出并评估了几种可操作的改进,其中包括变化检测算法和使用时间窗进行上下文异常检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信