A new approach for high performance RNS-FIR filter using the moduli set {2k − 1, 2k, 2k−1 − 1}

Srinivasa Reddy Kotha, Akshit Singhvi, S. K. Sahoo
{"title":"A new approach for high performance RNS-FIR filter using the moduli set {2k − 1, 2k, 2k−1 − 1}","authors":"Srinivasa Reddy Kotha, Akshit Singhvi, S. K. Sahoo","doi":"10.1109/ISCAIE.2014.7010225","DOIUrl":null,"url":null,"abstract":"This work proposes two finite impulse response (FIR) filters using Residue Number Systems (RNS) technique. The moduli set adopted is {2k - 1, 2k, 2k-1 - 1}. The proposed method uses Stored Coefficient Product (SCP) to compute the multiplication of input with the filter coefficient. Further, the circular shift property of the moduli set is exploited to improve the performance of the filter. The two proposed filters, RNS_P1 and RNS_P2, are compared with the conventional RNS-FIR filter (RNS_C) which uses the moduli set {2k - 1, 2k, 2k + 1}. The filters are implemented with VerilogHDL and are synthesized using Cadence RTL compiler in UMC 90nm technology. The performance of the filters are compared in terms of Area (A), Power (P), Delay (D) and Power-Delay Product (PDP). In comparison to RNS_C, the filter RNS_P1 improves gain in area by 75% and power by 72%, whereas RNS_P2 provides gain of 67% in area and 67.5% in power. However, the gain in delay and PDP for RNS_P2 are 31% and 71% respectively, as compared to 17% and 76% of the filter RNS_P1.","PeriodicalId":385258,"journal":{"name":"2014 IEEE Symposium on Computer Applications and Industrial Electronics (ISCAIE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computer Applications and Industrial Electronics (ISCAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAIE.2014.7010225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work proposes two finite impulse response (FIR) filters using Residue Number Systems (RNS) technique. The moduli set adopted is {2k - 1, 2k, 2k-1 - 1}. The proposed method uses Stored Coefficient Product (SCP) to compute the multiplication of input with the filter coefficient. Further, the circular shift property of the moduli set is exploited to improve the performance of the filter. The two proposed filters, RNS_P1 and RNS_P2, are compared with the conventional RNS-FIR filter (RNS_C) which uses the moduli set {2k - 1, 2k, 2k + 1}. The filters are implemented with VerilogHDL and are synthesized using Cadence RTL compiler in UMC 90nm technology. The performance of the filters are compared in terms of Area (A), Power (P), Delay (D) and Power-Delay Product (PDP). In comparison to RNS_C, the filter RNS_P1 improves gain in area by 75% and power by 72%, whereas RNS_P2 provides gain of 67% in area and 67.5% in power. However, the gain in delay and PDP for RNS_P2 are 31% and 71% respectively, as compared to 17% and 76% of the filter RNS_P1.
基于模集{2k−1,2k, 2k−1−1}的高性能RNS-FIR滤波器新方法
本文利用剩余数系统(RNS)技术提出了两种有限脉冲响应(FIR)滤波器。采用的模集为{2k - 1,2k, 2k-1 -1}。该方法采用存储系数积(SCP)计算输入与滤波系数的乘积。进一步,利用模集的圆移位特性,提高了滤波器的性能。将提出的两种滤波器RNS_P1和RNS_P2与使用模集{2k - 1,2k, 2k + 1}的传统RNS-FIR滤波器(RNS_C)进行比较。该滤波器采用VerilogHDL实现,并在UMC 90nm技术下使用Cadence RTL编译器合成。从面积(A)、功率(P)、延迟(D)和功率延迟积(PDP)方面比较了滤波器的性能。与RNS_C相比,RNS_P1的面积增益提高了75%,功率提高了72%,而RNS_P2的面积增益提高了67%,功率提高了67.5%。然而,RNS_P2的延迟增益和PDP增益分别为31%和71%,而RNS_P1的延迟增益和PDP增益分别为17%和76%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信