Gate violation prediction at highway-rail grade crossings using tree-based ensemble techniques

Li Zhao, L. Rilett, Chenhui Liu
{"title":"Gate violation prediction at highway-rail grade crossings using tree-based ensemble techniques","authors":"Li Zhao, L. Rilett, Chenhui Liu","doi":"10.1080/19439962.2022.2164819","DOIUrl":null,"url":null,"abstract":"Abstract Highway-rail grade crossing (HRGC) safety is one of the priority areas in the United States transportation system that requires for greater research efforts not just limited to crash analysis, but also to gain a deeper understanding of surrogate safety measures such as driver behavior-based traffic violations at HRGCs. This paper uses vehicle profile data to identify the key variables and develop prediction models for gate violations and examine the relationship between model accuracy and the key input variables. A data set of 256 vehicle-train events was collected at two HRGC testbeds in Lincoln, Nebraska. Among them, 76 events are gate violations, and 180 events are non-violations. Two tree-based ensemble techniques, the bootstrap forest and the boosted tree, were applied to the data set. It was found that once a vehicle is within 190 feet from the HRGC stop line, the model was approximately 80 percent accurate in predicting a gate violation. It was also found that as vehicles came closer to the HRGC, the prediction error decreased. With the advent of vehicle profile data collection, tree-based ensemble techniques are ideal for safety studies as they can utilize the highly non-linear vehicle profiles and relate these to safety surrogate metrics.","PeriodicalId":205624,"journal":{"name":"Journal of Transportation Safety & Security","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Transportation Safety & Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19439962.2022.2164819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Highway-rail grade crossing (HRGC) safety is one of the priority areas in the United States transportation system that requires for greater research efforts not just limited to crash analysis, but also to gain a deeper understanding of surrogate safety measures such as driver behavior-based traffic violations at HRGCs. This paper uses vehicle profile data to identify the key variables and develop prediction models for gate violations and examine the relationship between model accuracy and the key input variables. A data set of 256 vehicle-train events was collected at two HRGC testbeds in Lincoln, Nebraska. Among them, 76 events are gate violations, and 180 events are non-violations. Two tree-based ensemble techniques, the bootstrap forest and the boosted tree, were applied to the data set. It was found that once a vehicle is within 190 feet from the HRGC stop line, the model was approximately 80 percent accurate in predicting a gate violation. It was also found that as vehicles came closer to the HRGC, the prediction error decreased. With the advent of vehicle profile data collection, tree-based ensemble techniques are ideal for safety studies as they can utilize the highly non-linear vehicle profiles and relate these to safety surrogate metrics.
基于树系集成技术的公路铁路平交道口闸门违章预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信