A PDE-based Method for Shape Registration

Esten Nicolai Wøien, M. Grasmair
{"title":"A PDE-based Method for Shape Registration","authors":"Esten Nicolai Wøien, M. Grasmair","doi":"10.1137/21m1408932","DOIUrl":null,"url":null,"abstract":"In the square root velocity framework, the computation of shape space distances and the registration of curves requires solution of a non-convex variational problem. In this paper, we present a new PDE-based method for solving this problem numerically. The method is constructed from numerical approximation of the Hamilton-Jacobi-Bellman equation for the variational problem, and has quadratic complexity and global convergence for the distance estimate. In conjunction, we propose a backtracking scheme for approximating solutions of the registration problem, which additionally can be used to compute shape space geodesics. The methods have linear numerical convergence, and improved efficiency compared previous global solvers.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Imaging Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1408932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the square root velocity framework, the computation of shape space distances and the registration of curves requires solution of a non-convex variational problem. In this paper, we present a new PDE-based method for solving this problem numerically. The method is constructed from numerical approximation of the Hamilton-Jacobi-Bellman equation for the variational problem, and has quadratic complexity and global convergence for the distance estimate. In conjunction, we propose a backtracking scheme for approximating solutions of the registration problem, which additionally can be used to compute shape space geodesics. The methods have linear numerical convergence, and improved efficiency compared previous global solvers.
基于pde的形状配准方法
在平方根速度框架中,形状空间距离的计算和曲线的配准需要求解一个非凸变分问题。本文提出了一种新的基于偏微分方程的数值求解方法。该方法由变分问题的Hamilton-Jacobi-Bellman方程的数值逼近构造而成,对于距离估计具有二次复杂度和全局收敛性。同时,我们提出了一种回溯方案来逼近配准问题的解,该方案还可以用于计算形状空间测地线。该方法具有线性数值收敛性,与以往的全局求解方法相比,提高了求解效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信