Context-Aware Term Weighting For First Stage Passage Retrieval

Zhuyun Dai, Jamie Callan
{"title":"Context-Aware Term Weighting For First Stage Passage Retrieval","authors":"Zhuyun Dai, Jamie Callan","doi":"10.1145/3397271.3401204","DOIUrl":null,"url":null,"abstract":"Term frequency is a common method for identifying the importance of a term in a document. But term frequency ignores how a term interacts with its text context, which is key to estimating document-specific term weights. This paper proposes a Deep Contextualized Term Weighting framework (DeepCT) that maps the contextualized term representations from BERT to into context-aware term weights for passage retrieval. The new, deep term weights can be stored in an ordinary inverted index for efficient retrieval. Experiments on two datasets demonstrate that DeepCT greatly improves the accuracy of first-stage passage retrieval algorithms.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

Abstract

Term frequency is a common method for identifying the importance of a term in a document. But term frequency ignores how a term interacts with its text context, which is key to estimating document-specific term weights. This paper proposes a Deep Contextualized Term Weighting framework (DeepCT) that maps the contextualized term representations from BERT to into context-aware term weights for passage retrieval. The new, deep term weights can be stored in an ordinary inverted index for efficient retrieval. Experiments on two datasets demonstrate that DeepCT greatly improves the accuracy of first-stage passage retrieval algorithms.
第一阶段文章检索的上下文感知词权
术语频率是识别文档中术语重要性的常用方法。但是术语频率忽略了术语如何与其文本上下文相互作用,这是估计特定于文档的术语权重的关键。本文提出了一种深度上下文化术语加权框架(DeepCT),该框架将BERT的上下文化术语表示映射到上下文感知的术语权重,用于通道检索。新的深度项权重可以存储在一个普通的倒排索引中,以便有效地检索。在两个数据集上的实验表明,DeepCT极大地提高了第一阶段通道检索算法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信