Augmenting Histological Images with Adversarial Attacks

Nikita Djeffrievich Lockshin, A. Khvostikov, A. Krylov
{"title":"Augmenting Histological Images with Adversarial Attacks","authors":"Nikita Djeffrievich Lockshin, A. Khvostikov, A. Krylov","doi":"10.20948/graphicon-2022-637-647","DOIUrl":null,"url":null,"abstract":"Neural networks have shown to be vulnerable against adversarial attacks - images with carefully crafted adversarial noise that is imperceptible to the human eye. In medical imaging tasks this can be a major threat for making predictions based on deep neural network solutions. In this paper we propose a pipeline for augmenting a small histological image dataset using State-of-the-Art data generation methods and demonstrate an increase in accuracy of a neural classifier trained on the augmented dataset when faced with adversarial images. When trained on the non-augmented dataset, the neural network achieves an accuracy of 55.24 on the test set with added adversarial noise, and an accuracy of 97.40 on the same test set when trained on the augmented dataset.","PeriodicalId":299055,"journal":{"name":"Proceedings of the 32nd International Conference on Computer Graphics and Vision","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 32nd International Conference on Computer Graphics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20948/graphicon-2022-637-647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Neural networks have shown to be vulnerable against adversarial attacks - images with carefully crafted adversarial noise that is imperceptible to the human eye. In medical imaging tasks this can be a major threat for making predictions based on deep neural network solutions. In this paper we propose a pipeline for augmenting a small histological image dataset using State-of-the-Art data generation methods and demonstrate an increase in accuracy of a neural classifier trained on the augmented dataset when faced with adversarial images. When trained on the non-augmented dataset, the neural network achieves an accuracy of 55.24 on the test set with added adversarial noise, and an accuracy of 97.40 on the same test set when trained on the augmented dataset.
利用对抗性攻击增强组织学图像
神经网络在面对对抗性攻击时表现得很脆弱,即带有人眼无法察觉的精心制作的对抗性噪声的图像。在医学成像任务中,这可能是基于深度神经网络解决方案进行预测的主要威胁。在本文中,我们提出了一个使用最先进的数据生成方法来增强小型组织学图像数据集的管道,并展示了在增强数据集上训练的神经分类器在面对对抗图像时的准确性。在非增广数据集上训练时,神经网络在添加对抗噪声的测试集上的准确率为55.24,在增广数据集上训练时,神经网络在同一测试集上的准确率为97.40。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信