Text classification using KM-ELM classifier

K. Neethu, T. S. Jyothis, Jithin Dev
{"title":"Text classification using KM-ELM classifier","authors":"K. Neethu, T. S. Jyothis, Jithin Dev","doi":"10.1109/ICCPCT.2016.7530338","DOIUrl":null,"url":null,"abstract":"Classification systems adapts many machine learning techniques for quality performance in data classification. The neural networks has some unique characteristics and features which can handle high dimensional features and documents with noise and contradictory data. Classification is important to classify the input text into different domains appropriately. This paper give out a move towards classification of text that combines two machine learning techniques, K-Means and extreme learning machines. First the clustering and feature selection will perform using K-Means algorithm and then this attribute will be the training set for the extreme learning machine. Extreme learning machines nothing but a feed forward neural network without any tuning and has a single hidden layer. The experimental results on different datasets have shown that the combination of machine learning techniques shows a performance improvement.","PeriodicalId":431894,"journal":{"name":"2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPCT.2016.7530338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Classification systems adapts many machine learning techniques for quality performance in data classification. The neural networks has some unique characteristics and features which can handle high dimensional features and documents with noise and contradictory data. Classification is important to classify the input text into different domains appropriately. This paper give out a move towards classification of text that combines two machine learning techniques, K-Means and extreme learning machines. First the clustering and feature selection will perform using K-Means algorithm and then this attribute will be the training set for the extreme learning machine. Extreme learning machines nothing but a feed forward neural network without any tuning and has a single hidden layer. The experimental results on different datasets have shown that the combination of machine learning techniques shows a performance improvement.
使用KM-ELM分类器进行文本分类
分类系统采用了许多机器学习技术来提高数据分类的质量。神经网络具有一些独特的特性和特征,可以处理高维特征和带有噪声和矛盾数据的文档。分类是将输入文本适当地划分到不同的域的重要方法。本文提出了一种结合了K-Means和极限学习机两种机器学习技术的文本分类方法。首先使用K-Means算法进行聚类和特征选择,然后将该属性作为极限学习机的训练集。极限学习机器只不过是一个前馈神经网络,没有任何调整,只有一个隐藏层。在不同数据集上的实验结果表明,机器学习技术的结合显示出性能的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信