Stress tensor in model polymer systems with periodic boundaries

D. Theodorou, T. Boone, L. Dodd, K. Mansfield
{"title":"Stress tensor in model polymer systems with periodic boundaries","authors":"D. Theodorou, T. Boone, L. Dodd, K. Mansfield","doi":"10.1002/MATS.1993.040020204","DOIUrl":null,"url":null,"abstract":"The calculation of the stress tensor from molecular simulations of atomistic model polymer systems employing periodic boundary conditions is discussed. Starting from the dynamical equations governing the motion of sites, correct double summation forms of the atomic and the molecular virial equations are derived, which are valid for flexible, infinitely stiff and rigid chain models even in the presence of interactions between different images of the same parent macromolecule. A new expression for the true instantaneous stress (flux of momentum through the faces of the simulation box) is derived and shown to exhibit large fluctuations when applied in molecular dynamics simulations. A new equation for the thermodynamic stress, cast exclusively in terms of intermolecular forces on interaction sites, is also derived. Application to Monte Carlo simulations shows that the molecular virial expression exhibits the smallest fluctuations among all stress expressions discussed, and thus allows computation of the thermodynamic stress with least uncertainty. A scheme is developed for the calculation of surface tension from intermolecular forces only.","PeriodicalId":227512,"journal":{"name":"Die Makromolekulare Chemie, Theory and Simulations","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Die Makromolekulare Chemie, Theory and Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/MATS.1993.040020204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

The calculation of the stress tensor from molecular simulations of atomistic model polymer systems employing periodic boundary conditions is discussed. Starting from the dynamical equations governing the motion of sites, correct double summation forms of the atomic and the molecular virial equations are derived, which are valid for flexible, infinitely stiff and rigid chain models even in the presence of interactions between different images of the same parent macromolecule. A new expression for the true instantaneous stress (flux of momentum through the faces of the simulation box) is derived and shown to exhibit large fluctuations when applied in molecular dynamics simulations. A new equation for the thermodynamic stress, cast exclusively in terms of intermolecular forces on interaction sites, is also derived. Application to Monte Carlo simulations shows that the molecular virial expression exhibits the smallest fluctuations among all stress expressions discussed, and thus allows computation of the thermodynamic stress with least uncertainty. A scheme is developed for the calculation of surface tension from intermolecular forces only.
具有周期边界的模型聚合物体系的应力张量
讨论了采用周期边界条件的原子模型聚合物的分子模拟中应力张量的计算。从控制位点运动的动力学方程出发,导出了正确的原子和分子维里方程的双和形式,这些形式适用于柔性链、无限刚性链和刚性链模型,即使在同一母大分子的不同像之间存在相互作用的情况下。导出了真实瞬时应力(通过模拟盒面的动量通量)的新表达式,并表明在应用于分子动力学模拟时显示出较大的波动。还推导出了一个新的热力学应力方程,该方程完全以相互作用位点上的分子间作用力来表示。应用蒙特卡罗模拟表明,分子维里表达式在所有讨论的应力表达式中表现出最小的波动,从而使热力学应力的计算具有最小的不确定性。本文提出了一种仅从分子间力计算表面张力的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信