{"title":"Improving Hierarchical Image Classification with Merged CNN Architectures","authors":"Anuvabh Dutt, D. Pellerin, G. Quénot","doi":"10.1145/3095713.3095745","DOIUrl":null,"url":null,"abstract":"We consider the problem of image classification using deep convolutional networks, with respect to hierarchical relationships among classes. We investigate if the semantic hierarchy is captured by CNN models or not. For this we analyze the confidence of the model for a category and its sub-categories. Based on the results, we propose an algorithm for improving the model performance at test time by adapting the classifier to each test sample and without any re-training. Secondly, we propose a strategy for merging models for jointly learning two levels of hierarchy. This reduces the total training time as compared to training models separately, and also gives improved classification performance.","PeriodicalId":310224,"journal":{"name":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3095713.3095745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We consider the problem of image classification using deep convolutional networks, with respect to hierarchical relationships among classes. We investigate if the semantic hierarchy is captured by CNN models or not. For this we analyze the confidence of the model for a category and its sub-categories. Based on the results, we propose an algorithm for improving the model performance at test time by adapting the classifier to each test sample and without any re-training. Secondly, we propose a strategy for merging models for jointly learning two levels of hierarchy. This reduces the total training time as compared to training models separately, and also gives improved classification performance.