Combining Architectures for Temporal Learning in Neural-Symbolic Systems

Rafael V. Borges, L. Lamb, A. Garcez
{"title":"Combining Architectures for Temporal Learning in Neural-Symbolic Systems","authors":"Rafael V. Borges, L. Lamb, A. Garcez","doi":"10.1109/HIS.2006.17","DOIUrl":null,"url":null,"abstract":"We present a new approach to incorporate a temporal dimension into a hybrid system, by integrating a symbolic model and recurrent neural networks. This combination is supported by an algorithm to perform empirical learning. Further, the network is submitted to testbeds to analyse the influence of background knowledge insertion in the experiments and to validate the algorithm¿s learning capability. Finally, we show that the proposed architecture outperforms existing approaches to temporal learning in connectionist systems.","PeriodicalId":150732,"journal":{"name":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2006.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a new approach to incorporate a temporal dimension into a hybrid system, by integrating a symbolic model and recurrent neural networks. This combination is supported by an algorithm to perform empirical learning. Further, the network is submitted to testbeds to analyse the influence of background knowledge insertion in the experiments and to validate the algorithm¿s learning capability. Finally, we show that the proposed architecture outperforms existing approaches to temporal learning in connectionist systems.
神经符号系统中时间学习的组合架构
我们提出了一种新的方法,通过集成符号模型和递归神经网络,将时间维度纳入混合系统。这种组合由执行经验学习的算法支持。将该网络提交到实验平台,分析背景知识插入对实验的影响,验证算法的学习能力。最后,我们证明了所提出的架构优于连接主义系统中现有的时间学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信