Greedy deep dictionary learning for hyperspectral image classification

Snigdha Tariyal, H. Aggarwal, A. Majumdar
{"title":"Greedy deep dictionary learning for hyperspectral image classification","authors":"Snigdha Tariyal, H. Aggarwal, A. Majumdar","doi":"10.1109/WHISPERS.2016.8071740","DOIUrl":null,"url":null,"abstract":"In this work we propose a new deep learning tool — deep dictionary learning. We give an alternate neural network type interpretation to dictionary learning. Based on this, we build a deep architecture by cascading one dictionary after the other. The learning proceeds in a greedy fashion, therefore for each level we only need to learn a single layer of dictionary — time tested tools are there to solve this problem. We compare our approach to the deep belief network (DBN) and stacked autoencoder (SAE) based techniques for hyperspectral image classification. We find that in the practical scenario, when the training data is limited, our method outperforms the more established tools like SAE and DBN.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this work we propose a new deep learning tool — deep dictionary learning. We give an alternate neural network type interpretation to dictionary learning. Based on this, we build a deep architecture by cascading one dictionary after the other. The learning proceeds in a greedy fashion, therefore for each level we only need to learn a single layer of dictionary — time tested tools are there to solve this problem. We compare our approach to the deep belief network (DBN) and stacked autoencoder (SAE) based techniques for hyperspectral image classification. We find that in the practical scenario, when the training data is limited, our method outperforms the more established tools like SAE and DBN.
贪婪深度字典学习用于高光谱图像分类
本文提出了一种新的深度学习工具——深度字典学习。我们为字典学习提供了另一种神经网络类型的解释。在此基础上,我们通过一个接一个的级联字典构建了一个深度架构。学习以贪婪的方式进行,因此对于每一层,我们只需要学习一层字典——经过时间考验的工具可以解决这个问题。我们将我们的方法与基于深度信念网络(DBN)和堆叠自编码器(SAE)的高光谱图像分类技术进行了比较。我们发现,在实际场景中,当训练数据有限时,我们的方法优于更成熟的工具,如SAE和DBN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信