Energy Management in an Agile Workspace using AI-driven Forecasting and Anomaly Detection

H. Manzoor, A. Khan, Mohammad Al-Quraan, L. Mohjazi, Ahmad Taha, Hasan Abbas, S. Hussain, M. Imran, A. Zoha
{"title":"Energy Management in an Agile Workspace using AI-driven Forecasting and Anomaly Detection","authors":"H. Manzoor, A. Khan, Mohammad Al-Quraan, L. Mohjazi, Ahmad Taha, Hasan Abbas, S. Hussain, M. Imran, A. Zoha","doi":"10.1109/gpecom55404.2022.9815599","DOIUrl":null,"url":null,"abstract":"Smart building technologies transform buildings into agile, sustainable, and health-conscious ecosystems by leveraging IoT platforms. In this regard, we have developed a Persuasive Energy Conscious Network (PECN) at the University of Glasgow to understand the user-centric energy consumption patterns in an agile workspace. PECN consists of desk-level energy monitoring sensors that enable us to develop user-centric models that can be exploited to characterize the normal energy usage behavior of an office occupant. In this study, we make use of staked long short-term memory (LSTM) to forecast future energy demands. Moreover, we employed statistical techniques to automate the detection of anomalous power consumption patterns. Our experimental results indicate that post-anomaly resolution leads to 6.37% improvement in the forecasting accuracy.","PeriodicalId":441321,"journal":{"name":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/gpecom55404.2022.9815599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Smart building technologies transform buildings into agile, sustainable, and health-conscious ecosystems by leveraging IoT platforms. In this regard, we have developed a Persuasive Energy Conscious Network (PECN) at the University of Glasgow to understand the user-centric energy consumption patterns in an agile workspace. PECN consists of desk-level energy monitoring sensors that enable us to develop user-centric models that can be exploited to characterize the normal energy usage behavior of an office occupant. In this study, we make use of staked long short-term memory (LSTM) to forecast future energy demands. Moreover, we employed statistical techniques to automate the detection of anomalous power consumption patterns. Our experimental results indicate that post-anomaly resolution leads to 6.37% improvement in the forecasting accuracy.
使用人工智能驱动的预测和异常检测的敏捷工作空间中的能量管理
智能建筑技术通过利用物联网平台,将建筑转变为灵活、可持续和注重健康的生态系统。在这方面,我们在格拉斯哥大学开发了一个有说服力的能源意识网络(PECN)来理解敏捷工作空间中以用户为中心的能源消耗模式。PECN由桌面级能源监测传感器组成,使我们能够开发以用户为中心的模型,可以利用该模型来表征办公室居住者的正常能源使用行为。在这项研究中,我们利用赌注长短期记忆(LSTM)来预测未来的能源需求。此外,我们采用统计技术来自动检测异常的功耗模式。实验结果表明,异常后分辨率使预测精度提高了6.37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信