Hybrid Feature Selection Based on Improved GA for the Intrusion Detection System

Shu-xin Zhu, Bin Hu
{"title":"Hybrid Feature Selection Based on Improved GA for the Intrusion Detection System","authors":"Shu-xin Zhu, Bin Hu","doi":"10.11591/TELKOMNIKA.V11I4.1823","DOIUrl":null,"url":null,"abstract":"High dimensionality is one of the most troublesome difficulties encountered in intrusion detection system analysis and application. For high dimension data, feature selection not only can improve the accuracy and efficiency of classification, but also discover informative subset. Combining Filter type and Wrapper type characteristics, this paper proposes a hybrid type method for feature selection using a improved genetic algorithm contained reward and punishment mechanism. The mechanism can guarantee this algorithm rapid convergence on approximate global optimal solution. According to the experimental results, this algorithm performs well and it's time complexity is low. Keywords: intrusion detection system; genetic algorithm(GA); Feature selection; Mutual information; hybrid typ.  DOI:  http://dx.doi.org/10.11591/telkomnika.v11i4.1823 Full Text: PDF","PeriodicalId":414053,"journal":{"name":"TELKOMNIKA : Indonesian Journal of Electrical Engineering","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TELKOMNIKA : Indonesian Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/TELKOMNIKA.V11I4.1823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

High dimensionality is one of the most troublesome difficulties encountered in intrusion detection system analysis and application. For high dimension data, feature selection not only can improve the accuracy and efficiency of classification, but also discover informative subset. Combining Filter type and Wrapper type characteristics, this paper proposes a hybrid type method for feature selection using a improved genetic algorithm contained reward and punishment mechanism. The mechanism can guarantee this algorithm rapid convergence on approximate global optimal solution. According to the experimental results, this algorithm performs well and it's time complexity is low. Keywords: intrusion detection system; genetic algorithm(GA); Feature selection; Mutual information; hybrid typ.  DOI:  http://dx.doi.org/10.11591/telkomnika.v11i4.1823 Full Text: PDF
基于改进遗传算法的入侵检测系统混合特征选择
高维是入侵检测系统分析和应用中遇到的最棘手的问题之一。对于高维数据,特征选择不仅可以提高分类的准确性和效率,还可以发现信息子集。结合Filter类型和Wrapper类型的特征,提出了一种基于奖惩机制的改进遗传算法的混合类型特征选择方法。该机制保证了算法快速收敛于近似全局最优解。实验结果表明,该算法性能良好,时间复杂度低。关键词:入侵检测系统;遗传算法(GA);特征选择;互信息;混合typ。DOI: http://dx.doi.org/10.11591/telkomnika.v11i4.1823全文:PDF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信